Concept explainers
Stability of equilibrium points Find the equilibrium solution of the following equations, make a sketch of the direction field, for t ≥ 0, and determine whether the equilibrium solution is stable. The direction field needs to indicate only whether solutions are increasing or decreasing on either side of the equilibrium solution.
19.
Want to see the full answer?
Check out a sample textbook solutionChapter D1 Solutions
Student Solutions Manual, Single Variable for Calculus: Early Transcendentals
Additional Math Textbook Solutions
Introductory Statistics
Pre-Algebra Student Edition
Elementary Statistics (13th Edition)
Elementary Statistics
Algebra and Trigonometry (6th Edition)
- A force of 480 newtons stretches a spring 2 meters. A mass of 60 kilograms is attached to the end of the spring and is initially released from the equilibrium position with an upward velocity of 10 m/s. Find the equation of motion. x(t)=_______________ marrow_forwardTransient Orifice Flow: Water is discharged from a reservoir through a long pipe as shown. By neglecting the change in the level of the reservoir, the transient velocity of the water flowing from the pipe, vt), can be expressed as: - Reservoir v(t) V2gh = tanh V2gh) Pipe Where h is the height of the fluid in the 7- reservoir, L is the length of the pipe, g is the acceleration due to gravity, and t is the time elapsed from the beginning of the flow Transient Orifice Flow: Determine the helght of the fluid in the reservoir at time, t= 2.5 seconds, given that the velocity at the outfall, vt) = 3 m/s, the acceleration due to gravity, g = 9.81 m/s? and the length of the pipe to outfall, L= 1.5 meters. Reservoir v(t) V2gh = tanh 2L 2gh water Pipe Hint: Transform the equation to a function of form: fih) = 0 Solve MANUALLY using BISECTION AND REGULA-FALSI METHODS, starting at xn = 0.1, Kg =1, E = 0.001 and If(*new)l < Earrow_forwardA force of 540 newtons stretches a spring 3 meters. A mass of 45 kilograms is attached to the end of the spring and is Initially released from the equilibrium position with an upward velccity of 6 m/s. Find the equation of motion. x(t) = m MY NOTES ASK YOUR TEACHarrow_forward
- A mass weighting 40 lbs stretches a spring 8 inches. The mass is in a medium that exerts a viscous resistance of 11 lbs when the mass has a velocity of 2 ft/sec. Suppose the object is displaced an additional 5 inches and released. Find an equation for the object's displacement, u(t), in feet after t seconds. u(t)= Show Transcribed Textarrow_forwardHow do I solve in steps? What are the main equations that I use?arrow_forwardThe motion of an oscillating weight suspended from a spring was measured by a motion detector. The data were collected, and the approximate maximum displacements from equilibrium (y = 3) are labeled in the figure. The distance y from the motion detector is measured in centimeters, and the time t is measured in seconds. (0.125, 3.32) 4 (a) Is y a function of t? O Yes ○ No (0.375, 2.68) 0.9 Explain. ○ For some value of t there is more than one value of y. ○ For some value of y there is more than one value of t. OFor each value of t there corresponds one and only one value of y. For each value of y there is some value of t. ◇ For each value of y there corresponds one and only one value of t. (b) Approximate the amplitude and period. amplitude period cm S (c) Find a model for the data. y = (d) Use a graphing utility to graph the model in part (c). Compare the result with the data in the figure.arrow_forward
- dNo linearlfemential Find tovo to equation and als. thearrow_forwardConsider the following difference equation It41 = cz (5 –- t) where c > 0 is a parameter. The equation has two equilibria that one is a1 0. The second one is æ2 %3D The second equilibrium is stable for c € (a, B) where a = and B =arrow_forwardExercises. 1. (a) Find the differential of g(u, v) = u? + uv. (b) Use your answer to part (a) to estimate the change in g as you move from (1,2) to (1.2, 2.1).arrow_forward
- DE HW8 Q5arrow_forwardC An object travels with velocity function given by v (t) = 3t + 5. The next three questions refer to this object.arrow_forwardAn object moves in such a way that its displacement s (in metres) as a function of time t (in seconds) is given by the equation of this object at Determine the acceleration s(t) = 2t - 9t +7t-1 seconds. t= 2 3 m/sec O 6 m/sec O 4 m/sec O 2 m/secarrow_forward
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage