To prove that the determinant of the Vandermonde matrix V is
Explanation of Solution
Given information:
Vandermonde matrix V is given by
Explanation:
Start with induction on n .
For n = 1, the Vandermonde matrix is of size
Now, assume that the given condition is true for
Start from second last column on right side that is
The determinant will not be changed from this operation. All entries in the top row, except the leftmost one, have become zero as
After taking factors out,a
Thus, this completes the induction.
Want to see more full solutions like this?
- Consider the following. -4 2 0 1 -3 A = 0 4 2 2 1 2 2 (a) Verify that A is diagonalizable by computing P AP. P-lAP = E (b) Use the result of part (a) and the theorem below to find the eigenvalues of A. Similar Matrices Have the Same Eigenvalues If A and B are similar n xn matrices, then they have the same eigenvalues. VAarrow_forward9.arrow_forwardMinimize the following function using the Karnaugh Map. Show complete solution pleasearrow_forward
- Given matrices A and B, find the join, meet and Boolean product of A and B. A = ⌈ 1 0 1 ⌉ | 0 0 1 | ⌊ 1 1 0 ⌋ and B = ⌈ 1 0 0 ⌉ | 0 1 0 | ⌊ 0 0 1 ⌋arrow_forwardQ4: Write the parametric equation of revolution surface in matrix form only which generated by rotate a Bezier curve defined by the coefficient parameter in one plane only, for the x-axis [0,5, 10,4], y-axis [1,4,2,2] respectively, for u-0.5 and 0 = 45° Note: [the rotation about y-axis].arrow_forwardGenerate H (Hilbert Matrix) for n = 15.Compute the right-hand size vector b = Hx so that the exact solution is xˆ = 1 (thevector of ones). Solve the linear system in MATLAB as a least squares problem usingSVD and report the relative error in the approximate solution in the Euclidean norm.Compare your result to the solution obtained by H\b.arrow_forward
- USING PYTHON A tridiagonal matrix is one where the only nonzero elements are the ones on the main diagonal (i.e., ai,j where j = i) and the ones immediately above and belowit(i.e.,ai,j wherej=i+1orj=i−1). Write a function that solves a linear system whose coefficient matrix is tridiag- onal. In this case, Gauss elimination can be made much more efficient because most elements are already zero and don’t need to be modified or added. Please show steps and explain.arrow_forward77. Cinparrow_forward. The determinant of an n X n matrix can be used in solving systems of linear equations, as well as for other purposes. The determinant of A can be defined in terms of minors and cofactors. The minor of element aj is the determinant of the (n – 1) X (n – 1) matrix obtained from A by crossing out the elements in row i and column j; denote this minor by Mj. The cofactor of element aj, denoted by Cj. is defined by Cy = (-1y**Mg The determinant of A is computed by multiplying all the elements in some fixed row of A by their respective cofactors and summing the results. For example, if the first row is used, then the determi- nant of A is given by Σ (α(CI) k=1 Write a program that, when given n and the entries in an n Xn array A as input, computes the deter- minant of A. Use a recursive algorithm.arrow_forward
- (Cayley-IHamilton Theorem) The Cayley-Ilamilton theorem is a powerful theorem in Linear algebra that states: every square matrix of real numbers satisfies its own char- acteristic equation. For 2 x 2 matrices this can be seen in the following way. First, we introduce the trace of the matrix tr A 41,1 +22 and the determinant det A = a11a22 - 41,22,1- Then, the chacteristic polynomial is the quadratic given by p(A) = x – (tr A)A + (det. A). Then, for any 2 x 2 matrix, if you plug it into this polynomial, you should always get a zero matrix. c_h_test Function: Input parameters: • a single 2 x2 matrix for which you would like to test the Cayley Ilamilton Theorem Local Variables: • two scalars to represent the trace and determinant Output parameters: a single 2 x2 which is the result of evaluating the charcteristic polynomial at A (note: think carefully about the constant term) A possible sample case is: > mat_B = c_h_test([3, 2 ; 2, 0]) mat B = 0 0arrow_forwardFind the Inverse of Matrix ( 5 x 5 ) and Prove that the theory of ( A x A - ¹ ) = eye is true by using random matrix ?arrow_forwardFind the eigenvalues of the matrix and determine whether there is a sufficient number to guarantee that the matrix is diagonalizable. (Recall that the matrix may be diagonalizable even though it is not guaranteed to be diagonalizable by the theorem shown below.) Sufficient Condition for Diagonalization If an n xn matrix A has n distinct eigenvalues, then the corresponding eigenvectors are linearly independent and A is diagonalizable. Find the eigenvalues. (Enter your answers as a comma-separated list.) Is there a sufficient number to guarantee that the matrix is diagonalizable? O Yes O No Need Help? Read itarrow_forward
- Operations Research : Applications and AlgorithmsComputer ScienceISBN:9780534380588Author:Wayne L. WinstonPublisher:Brooks Cole