EBK GET READY FOR ORGANIC CHEMISTRY
EBK GET READY FOR ORGANIC CHEMISTRY
2nd Edition
ISBN: 9780321787989
Author: KARTY
Publisher: PEARSON CO
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter C, Problem C.26P
Interpretation Introduction

(a)

Interpretation:

E or Z configuration is to be assigned to each double bond wherever appropriate in the given molecule.

Concept introduction:

When assigning priorities to substituents, the atom having the greater atomic number has a higher priority. In the case of comparison between isotopes, the one having the greater atomic mass gets the higher priority. If the substituents are attached by the same atom, then the set of atoms one bond away from the point of attachment is compared. In each set, the highest priority atoms are compared. If the sets of atoms one bond away from the point of attachment are identical, then the sets of atoms one additional bond away from the point of attachment are compared. If the higher priority groups attached to the double bonded carbon atoms are on the same side of the double bond, the alkene is assigned Z configuration. If the higher priority groups attached to the double bonded carbon atoms are on the opposite side of the double bond, the alkene is assigned E configuration. When more than one double bond is present, each is assigned E or Z configuration, and the location of each double bond appears immediately before the E or Z designation.

Interpretation Introduction

(b)

Interpretation:

E or Z configuration is to be assigned to each double bond wherever appropriate in the given molecule.

Concept introduction:

When assigning priorities to substituents, the atom having the greater atomic number has a higher priority. In the case of comparison between isotopes, the one having the greater atomic mass gets the higher priority. If the substituents are attached by the same atom, then the set of atoms one bond away from the point of attachment is compared. In each set, the highest priority atoms are compared. If the sets of atoms one bond away from the point of attachment are identical, then the sets of atoms one additional bond away from the point of attachment are compared. If the higher priority groups attached to the double bonded carbon atoms are on the same side of the double bond, the alkene is assigned Z configuration. If the higher priority groups attached to the double bonded carbon atoms are on the opposite side of the double bond, the alkene is assigned E configuration. When more than one double bond is present, each is assigned E or Z configuration, and the location of each double bond appears immediately before the E or Z designation.

Interpretation Introduction

(c)

Interpretation:

E or Z configuration is to be assigned to each double bond wherever appropriate in the given molecule.

Concept introduction:

When assigning priorities to substituents, the atom having the greater atomic number has a higher priority. In the case of comparison between isotopes, the one having the greater atomic mass gets the higher priority. If the substituents are attached by the same atom, then the set of atoms one bond away from the point of attachment is compared. In each set, the highest priority atoms are compared. If the sets of atoms one bond away from the point of attachment are identical, then the sets of atoms one additional bond away from the point of attachment are compared. If the higher priority groups attached to the double bonded carbon atoms are on the same side of the double bond, the alkene is assigned Z configuration. If the higher priority groups attached to the double bonded carbon atoms are on the opposite side of the double bond, the alkene is assigned E configuration. When more than one double bond is present, each is assigned E or Z configuration, and the location of each double bond appears immediately before the E or Z designation.

Blurred answer
Students have asked these similar questions
Commercial bleach contains either chlorine or oxygen as an active ingredient.  A commercial oxygenated bleach is much safer to handle and less likely to ruin your clothes.  It is possible to determine the amount of active ingredient in an oxygenated bleach product by performing a redox titration.  The balance reaction for such a titration is: 6H+ +5H2O2 +2MnO4- à 5O2 + 2Mn2+ + 8H2O If you performed the following procedure: “First, dilute the Seventh Generation Non-Chlorine Bleach by pipetting 10 mL of bleach in a 100 mL volumetric flask and filling the flask to the mark with distilled water. Next, pipet 10 mL of the diluted bleach solution into a 250 mL Erlenmeyer flask and add 20 mL of 1.0 M H2SO4 to the flask. This solution should be titrated with 0.0100 M KMnO4 solution.”  It took 18.47mL of the KMnO4 to reach the endpoint on average.  What was the concentration of H2O2 in the original bleach solution in weight % assuming the density of bleach is 1g/mL?
10.
Proper care of pH electrodes: Why can you not store a pH electrode in distilled water?  What must you instead store it in?  Why?
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning
Nomenclature: Crash Course Chemistry #44; Author: CrashCourse;https://www.youtube.com/watch?v=U7wavimfNFE;License: Standard YouTube License, CC-BY