
Concept explainers
(a)
Interpretation:
The complete IUPAC name of the given molecule is to be determined.
Concept introduction:
A ring compound with a double bond and eight or more carbon atoms can have both E and Z configurations at the double bond. Rings containing seven carbon atoms or less have only Z configuration. The E configuration is too unstable because of a high ring strain. The E/Z designation is generally left out in this case.
The E/Z configuration is determined on the basis of the priorities of the two groups attached to the double bonded carbon atoms. Priority is assigned on the basis of the atomic number of the atom directly bonded to the double bonded carbon. Higher the atomic number, higher the priority. If the
When writing the name, the E/Z designation is written at the start, in parenthesis. If there are two or more double bonds, then they are listed with the respective locants.
If the higher priority groups at the two ends are on the same side of the double bond, then the compound is assigned a Z configuration. If they are on the opposite sides of the double bond, then an E configuration is assigned.
For determining the R/S configuration, the groups attached to the asymmetric center are assigned priorities, following the same rules outlined above. If the groups with priorities 1 to 3 are arranged clockwise with the lowest priority group going away from the observer, the asymmetric center is assigned R configuration. If they are arranged counterclockwise, the configuration assigned is S.
When writing the IUPAC name of a molecule, each R and S designation can be written immediately before the first number used to locate the substituent attached to the asymmetric carbon atom. An alternate way is to write all the R and S designations together at the front of the name. The locator number for each asymmetric carbon atom must appear before its R or S designation, and the designations must be separated from each other by a comma.
(b)
Interpretation:
The complete IUPAC name of the given molecule is to be determined.
Concept introduction:
A ring compound with a double bond and eight or more carbon atoms can have both E and Z configurations at the double bond. Rings containing seven carbon atoms or less have only Z configuration. The E configuration is too unstable because of a high ring strain. The E/Z designation is generally left out in this case.
The E/Z configuration is determined on the basis of the priorities of the two groups attached to the double bonded carbon atoms. Priority is assigned on the basis of the atomic number of the atom directly bonded to the double bonded carbon. Higher the atomic number, higher the priority. If the atomic numbers of both atoms attached to a carbon are the same, then the priority is determined on the basis of the atoms one bond away from the point of attachment.
When writing the name, the E/Z designation is written at the start, in parenthesis. If there are two or more double bonds, then they are listed with the respective locants.
If the higher priority groups at the two ends are on the same side of the double bond, then the compound is assigned a Z configuration. If they are on the opposite sides of the double bond, then an E configuration is assigned.
For determining the R/S configuration, the groups attached to the asymmetric center are assigned priorities, following the same rules outlined above. If the groups with priorities 1 to 3 are arranged clockwise with the lowest priority group going away from the observer, the asymmetric center is assigned R configuration. If they are arranged counterclockwise, the configuration assigned is S.
When writing the IUPAC name of a molecule, each R and S designation can be written immediately before the first number used to locate the substituent attached to the asymmetric carbon atom. An alternate way is to write all the R and S designations together at the front of the name. The locator number for each asymmetric carbon atom must appear before its R or S designation, and the designations must be separated from each other by a comma.
(c)
Interpretation:
The complete IUPAC name of the given molecule is to be determined.
Concept introduction:
A ring compound with a double bond and eight or more carbon atoms can have both E and Z configurations at the double bond. Rings containing seven carbon atoms or less have only Z configuration. The E configuration is too unstable because of a high ring strain. The E/Z designation is generally left out in this case.
The E/Z configuration is determined on the basis of the priorities of the two groups attached to the double bonded carbon atoms. Priority is assigned on the basis of the atomic number of the atom directly bonded to the double bonded carbon. Higher the atomic number, higher the priority. If the atomic numbers of both atoms attached to a carbon are the same, then the priority is determined on the basis of the atoms one bond away from the point of attachment.
When writing the name, the E/Z designation is written at the start, in parenthesis. If there are two or more double bonds, then they are listed with the respective locants.
If the higher priority groups at the two ends are on the same side of the double bond, then the compound is assigned a Z configuration. If they are on the opposite sides of the double bond, then an E configuration is assigned.
For determining the R/S configuration, the groups attached to the asymmetric center are assigned priorities, following the same rules outlined above. If the groups with priorities 1 to 3 are arranged clockwise with the lowest priority group going away from the observer, the asymmetric center is assigned R configuration. If they are arranged counterclockwise, the configuration assigned is S.
When writing the IUPAC name of a molecule, each R and S designation can be written immediately before the first number used to locate the substituent attached to the asymmetric carbon atom. An alternate way is to write all the R and S designations together at the front of the name. The locator number for each asymmetric carbon atom must appear before its R or S designation, and the designations must be separated from each other by a comma.

Want to see the full answer?
Check out a sample textbook solution
Chapter C Solutions
EBK GET READY FOR ORGANIC CHEMISTRY
- What is the organic molecule X of the following acetal hydrolysis? Please draw a skeletal line structure and include a detailed explanation and drawing of how the mechanism proceeds. Please include any relevant information that is needed to understand the process of acetal hydrolysis.arrow_forwardWhat are is the organic molecule X and product Y of the following acetal hydrolysis? Please draw a skeletal line structure and include a detailed explanation and drawing of how the mechanism proceeds. Please include any relevant information that is needed to understand the process of acetal hydrolysis.arrow_forwardAt 300 K, in the decomposition reaction of a reactant R into products, several measurements of the concentration of R over time have been made (see table). Without using graphs, calculate the order of the reaction. t/s [R]/(mol L-1) 0 0,5 171 0,16 720 0,05 1400 0,027arrow_forward
- Predict the organic products that form in the reaction below, and draw the skeletal ("line") structures of the missing organic products. Please include all steps & drawings & explanations.arrow_forwardWhat are the missing reagents for the spots labeled 1 and 3? Please give a detailed explanation and include the drawings and show how the synthesis proceeds with the reagents.arrow_forwardWhat are the products of the following acetal hydrolysis? Please draw a skeletal line structure and include a detailed explanation and drawing of how the mechanism proceeds. Please include any relevant information that is needed to understand the process of acetal hydrolysis.arrow_forward
- What would happen if you added the HCI to the Grignard reagent before adding benzophenone? Draw a reaction mechanism to support your answer.arrow_forwardAt 300 K, in the decomposition reaction of a reactant R into products, several measurements of the concentration of R over time have been made (see table). Calculate the order of the reaction. t/s [R]/ (mol L-1) 0 0,5 171 0,16 720 0,05 1400 0,027arrow_forwardWrite the correct IUPAC names of the molecules in the picturearrow_forward
- How many grams of solid NaCN have to be added to 1.5L of water to dissolve 0.18 mol of Fe(OH)3 in the form Fe(CN)63 - ? ( For simplicity, ignore the reaction of CN - ion with water) Ksp for Fe(OH)3 is 2.8E -39, and Kform for Fe(CN)63 - is 1.0E31arrow_forwardDraw the most stable chair conformation of 1-ethyl-1-methylcyclohexane, clearly showing the axial and equatorial substituents. [4] Draw structures corresponding to the following IUPAC name for each of the following compounds; [5] i) 4-Isopropyl-2,4,5-trimethylheptane ii) trans-1-tert-butyl-4-ethylcyclohexane iii) Cyclobutylcycloheptane iv) cis-1,4-di-isopropylcyclohexane (chair conformation) v) 3-Ethyl-5-isobutylnonanearrow_forwardDraw and name molecules that meet the following descriptions; [4] a) An organic molecule containing 2 sp2 hybridised carbon and 1 sp-hybridised carbon atom. b) A cycloalkene, C7H12, with a tetrasubstituted double bond. Also answer question 2 from the imagearrow_forward
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
