Concept explainers
Practice Problem C.1
(a) Write structural formulas for portions of the chain of the atactic, syndiotactic, and iso-tactic forms of polystyrene (see Practice Problem 10.15). (b) If solutions were made of each of these forms of polystyrene, which solutions would you expect to show optical activity?
Interpretation:
The structural formula for the atactic, syndiotactic, and isotactic forms of polystyrene is to be determined.
Concept introduction:
>The polymer, on the basis of stereochemistry around the chiral center, is classified as atactic, syndiotactic, and isotactic.
>A polymer in which the stereochemistry at the chiral centre is random is said to be the atactic polymer.
>A polymer in which the stereochemistry at the chiral centre alternates regularly, from one side to the other, on the chain is said to be the syndiotactic polymer.
>A polymer in which the stereochemistry of all chiral centres is the same is said to be the isotactic polymer.
>The polystyrene is the aromatic hydrocarbon polymer of the monomer styrene.
>A molecule is considered optically-active if it contains an achiral center and its mirror image is non-superimposable.
>The molecules which are non-superimposable or not identical with their mirror images are known as chiral molecules.
>A pair of two mirror images which are non-identical is known as enantiomers which are optically active.
>The objects or molecules which are superimposable with their mirror images are achiral objects or molecules and these objects have a centre of symmetry or plane of symmetry.
>The achiral compounds in which plane of symmetry is present internally and consists of chiral centres are known as meso compounds, but they are optically inactive.
>Diastereomers are the stereoisomers that are not mirror images of each other and are not superimposable on each other.
>They possess different physical as well as chemical properties, because of difference in orientations.
Answer to Problem 1PP
Solution:
(a) The structural formula for atactic, syndiotactic, and isotactic forms of polystyrene is as:
(b) The solution of isotactic polystyrene shows optical activity.
Explanation of Solution
a) The structural formula for portion of the chain of the atactic, and iso-tactic forms of polystyrene.
On the basis of arrangement of substituents on the chiral centre in the chain, the polymer is classified into atactic, syndiotactic, and isotactic.
A polymer in which the stereochemistry at the chiral centre is random is said to be the atactic polymer.
A polymer in which the stereochemistry at the chiral centre alternates regularly, from one side to the other, on the chain is said to be the syndiotactic polymer.
A polymer in which the stereochemistry of all chiral centres is the same is said to be the isotactic polymer.
Thus, the structural formula for the atactic form of polystyrene is as:
Thus, the structural formula for the syndiotactic form of polystyrene is as:
Thus, the structural formula for the isotactic form of polystyrene is as:
b) The solution that expected to show optical activity.
A molecule is considered optically-active if it contains an achiral center and its mirror image is non-superimposable. Among the solutions of atactic, syndiotactic, and isotactic forms of polystyrene, the solution of isotactic polystyrene rotates the plane-polarized light and its mirror image is non-superimposable. Thus, the isotactic polystyrene shows optical activity.
Therefore, the solution of isotactic polystyrene shows optical activity.
Want to see more full solutions like this?
Chapter C Solutions
ORGANIC CHEMISTRY (LL) W/WILEYPLUS NEXT
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
Microbiology: An Introduction
Campbell Biology (11th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
- f) The unusual molecule [2.2.2] propellane is pictured. 1) Given the bond length and bond angles in the image, what hybridization scheme best describes the carbons marked by the askerisks? 2) What types of orbitals are used in the bond between the two carbons marked by the askerisks? 3) How does this bond compare to an ordinary carbon-carbon bond (which is usually 1.54 Å long)? CH2 1.60Å H2C た C CH2 H2C H₂C * 120° C H2arrow_forwardDenote the dipole for the indicated bonds in the following molecules. H3C CH3 B F-CCl3 Br-Cl | H3C Si(CH3)3 OH НО. HO H O HO OH vitamin C CH3arrow_forwardQ2: Draw all applicable resonance forms for the acetate ion CH3COO. Clearly show all lone pairs, charges, and arrow formalism.arrow_forward
- How do I calculate the amount of quarks in magnesium?arrow_forwardPlease provide the mechanism for the reaction attached. Please include all arrows, intermediates, and formalcharges. If a Sigma complex, please draw all major resonance forms.arrow_forwardPredict the product or products for the following reactions. Please include both ortho and para substitutions, if it applies, and indicate the major product, if it applies.arrow_forward
- The bromination of naphthalene via electrophilic aromatic substitution. Please draw out all of the resonance structures created from addition at the C1 carbon. Please also draw out all of the resonance structures created from addition at the C2 carbon. Which carbon (C1 or C2) is more favored?arrow_forwardPredict the product or products for the following reactions. Please include both ortho and para substitutions, if it applies, and indicate the major product, if it applies.arrow_forwardChapter 1 In-Class-Problem set ☺ Study The C3-C4 carbon-carbon bond in the following molecule results from the overlap of which orbitals (in the order C3-C4)? о a) sp-sp² b) sp-sp³ c) sp²-sp² d) sp²-sp³ e) sp³-sp² 7 6 M 4 3 2arrow_forward
- Count how many pi and sigma bonds are in the following molecule, caffeine. Circle all sp3 hybridized atoms, box sp₂ hybridized atoms, and draw a triangle around all sp hybridized atoms. N N N Z - - N -arrow_forwardFill in the blanks of the following chart Characteristic Atomic Number Symbol amul Description Protons + Neutrons Use the following words to label the diagrams: Atomic Number, Valence State, Chemical Symbol, Number of Atoms, Molecule, Atomic Mass 40Ca 74W H₂O Na+¹ CI-1arrow_forwardin aqueous solution, bromine oxidises sulphur dioxide so2 to sulphate ions so42- i) deduce the oxidation state of sulphur in so2 and so4 2- ii) deduce a half equation for the reduction of bromine in an aqueous solution iii) deduce a hald equation for the oxidatio of so2 in aquoes solution forming so42- and h+ ionsarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY