
Machine Tool Practices (10th Edition)
10th Edition
ISBN: 9780132912655
Author: Richard R. Kibbe, Roland O. Meyer, Warren T. White, John E. Neely, Jon Stenerson, Kelly Curran
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter B.2, Problem 5ST
How can the finished surface of a part be protected in a vise?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A standard Carnot heat engine cycle is executed in a closed system between
the temperature limits of 320 and 1350 K, with air as the working fluid. The
pressures before and after the isothermal compression are 150 and 300
kPa, respectively. Sketch the TS diagram for this cycle.
If the net work output per cycle is 0.75 kJ, determine the efficiency of the
cycle and the heat transfer to the air
(working fluid) per cycle.
PROBLEM 10: A sleeve in the form of a circular tube of length L is Nut
placed around a bolt and fitted between washers at each end.
The nut is then turned until it is just snug.
Use material properties as follows:
For the sleeve, as = 21 x 106/°C and Es = 100 GPa
Washer
Bolt
·L·
Sleeve
Bolt head
For the bolt, αB = 10 × 10-6/°C and EB = 200 GPa.
1. Calculate the temperature rise that is required to produce a compressive stress of 25 MPa in the sleeve.
This problem illustrates that the factor of safety for a machine element depends on the particular point selected for
analysis. Here you are to compute factors of safety, based upon the distortion-energy theory, for stress elements at A and
B of the member shown in the figure. This bar is made of AISI 1006 cold-drawn steel and is loaded by the forces
F = 1.100 kN, P = 8.00 kN, and T = 50.00 N·m. Given: Sy = 280 MPa.
B
-100 mm-
15-mm D.
a) What is the value of the axial stress at point A?
b)What is the value of the shear stress at point A?
c)Determine the value of the Von Mises stress at
point A.
P
F
Chapter B Solutions
Machine Tool Practices (10th Edition)
Ch. B.1 - Why is it important to know how to use the arbor...Ch. B.1 - What kinds of arbor presses are made? What makes...Ch. B.1 - List several uses of the arbor press.Ch. B.1 - A newly machined steel shaft with an interference...Ch. B.1 - The ram of an arbor press is loose in its guide...Ch. B.1 - When a bushing is pushed into a bore that is...Ch. B.1 - Prob. 7STCh. B.1 - What difference is there in the way a press fit is...Ch. B.1 - Prior to installing a bushing with the arbor...Ch. B.1 - Name five ways to avoid tool breakage and other...
Ch. B.2 - Prob. 1STCh. B.2 - Name two types of bench visesCh. B.2 - Prob. 3STCh. B.2 - Prob. 4STCh. B.2 - How can the finished surface of a part be...Ch. B.2 - Name three things that should never be done to a...Ch. B.2 - How should a vise be Lubricated?Ch. B.2 - Prob. 8STCh. B.2 - Prob. 9STCh. B.2 - Prob. 10STCh. B.2 - Prob. 11STCh. B.2 - What advantage does the lever-jawed wrench offer...Ch. B.2 - Prob. 13STCh. B.2 - Some objects should never be struck with a hard...Ch. B.2 - A machine has a capscrew that needs to be...Ch. B.2 - Why should pipe wrenches never be used on bolts,...Ch. B.2 - What are the two important things to remember...Ch. B.3 - What is the kerf?Ch. B.3 - What is the set on a saw blade?Ch. B.3 - What is the pitch of the hacksaw blade?Ch. B.3 - What determines the selection of a saw blade for a...Ch. B.3 - Hand hacksaw blades fall into two basic...Ch. B.3 - What speed should be used in hand hacksawing?Ch. B.3 - Give four causes that make saw blades dull.Ch. B.3 - Give two reasons why hacksaw blades break.Ch. B.3 - A new hacksaw blade should not be used in a cut...Ch. B.3 - What dangers exist when a hacksaw blade breaks...Ch. B.4 - Prob. 1STCh. B.4 - What are the four different cuts found on files?Ch. B.4 - Name four coarseness designations for files.Ch. B.4 - Which of the two kinds of files-single cut or...Ch. B.4 - Why are the faces of most files slightly convex?Ch. B.4 - What difference exists between a mill file and an...Ch. B.4 - In what way does an American pattern file differ...Ch. B.4 - What are the coarseness designations for needle...Ch. B.4 - Why should files be stored so do not touch each...Ch. B.4 - Prob. 10STCh. B.4 - What causes a file to get dull?Ch. B.4 - Why should a handle be used on a file?Ch. B.4 - Prob. 13STCh. B.4 - Prob. 14STCh. B.4 - How does the hardness of a workpiece affect the...Ch. B.4 - Prob. 16STCh. B.4 - Should pressure be applied to a file on the return...Ch. B.4 - Why is a round file rotated while it is being...Ch. B.5 - Prob. 1STCh. B.5 - What is the purpose of a starting taper on a...Ch. B.5 - What is the advantage of a spiral flute reamer...Ch. B.5 - How does the shank diameter of a hand reamer...Ch. B.5 - Prob. 5STCh. B.5 - Prob. 6STCh. B.5 - What is the purpose of cutting fluid in reaming?Ch. B.5 - Prob. 8STCh. B.5 - How much reaming allowance is left for hand...Ch. B.5 - If you were repairing the lathe tailstock taper,...Ch. B.6 - What type of tap is used to produce threads that...Ch. B.6 - Prob. 2STCh. B.6 - Prob. 3STCh. B.6 - When is a spiral fluted tap used?Ch. B.6 - How are thread-forming taps different from...Ch. B.6 - How are taper pipe taps identified?Ch. B.6 - Why are finishing and roughing Acme taps used?Ch. B.6 - Why are rake angles varied on taps for different...Ch. B.6 - Prob. 9STCh. B.6 - Prob. 10STCh. B.7 - What kind of tools are used to drive taps when...Ch. B.7 - What is a hand tapper?Ch. B.7 - What is a tapping attachment?Ch. B.7 - Which three factors affect the strength of a...Ch. B.7 - How deep should the usable threads be in a tapped...Ch. B.7 - When should tap drill holes be reamed?Ch. B.7 - What causes taps to break while tapping?Ch. B.7 - What causes rough and tom threads?Ch. B.7 - What causes oversized threads in a hole?Ch. B.7 - Give three methods of removing broken taps from...Ch. B.8 - What is a die?Ch. B.8 - What tool is used to drive a die?Ch. B.8 - How much adjustment is possible with a round split...Ch. B.8 - What is the purpose of the guide in a two-piece...Ch. B.8 - What are important points to watch when assembling...Ch. B.8 - Where are hexagon rethreading dies used?Ch. B.8 - Why do dies have a chamfer on the cutting end?Ch. B.8 - Why are cutting fluids used?Ch. B.8 - What diameter should a rod be before being...Ch. B.8 - Why should a rod be chamfered before being...Ch. B.9 - What is the primary function of the pedestal...Ch. B.9 - Why should a tool grinder never be used for rough...Ch. B.9 - Prob. 3STCh. B.9 - When sharpening layout tolls and other tools, what...Ch. B.9 - Prob. 5STCh. B.9 - Prob. 6STCh. B.9 - Prob. 7STCh. B.9 - What is the purpose of the wheel blotter?Ch. B.9 - Prob. 9STCh. B.9 - What does the wheel ring test do?
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The three steel wires, each of cross-sectional area 0.05 in2, support the weight W. Theirunstressed lengths are 74.98 ft, 74.99 ft, and 75.00 ft. Use E = 29 x 106 psi.1. Find the stress (psi) in the longest wire if W = 1500 lb.2. Determine the stress in the shortest wire if W = 500 lb ANSWERS: 6130 psi; 6930 psiarrow_forward1: The concrete column is reinforced using four steel reinforcing rods, each having a diameter of 18 mm. Determine the stress in the concrete and the steel if the column is subjected to an axial load of 800 kN. Est = 200 GPa, Ec = 25 GPa. Complete fbd.arrow_forward5: As shown, two aluminum rods AB and BC, hinged to rigid supports, arepinned together at B to carry a vertical load P = 6000 lb. If each rod has a crosssectional area of 0.60 in2 and E = 10 x 106 psi. Use α = θ = 30⁰. Calculate the change in length (in) of rod AB and indicate if it elongates orshortens. Calculate the vertical displacement of B (in) and horizontal displacement of B (in). Complete fbd.arrow_forward
- 2: The rigid bar supports the uniform distributedload of 6 kip/ft. Determine the force in each cable if each cable has a cross-sectional area of 0.05 in^2 , and E = 31(10)^3 ksi.arrow_forwardIn (Figure 1), take m₁ = 4 kg and mB = 4.6 kg. Determine the z component of the angular momentum Ho of particle A about point O. Determine the z component of the angular momentum Ho of particle B about point O. Suppose that 5 m 8 m/s 4 m 1.5 m 4 m B MB 1 m 2 m 5 30° 6 m/s MAarrow_forwardThe two disks A and B have a mass of 4 kg and 6 kg, respectively. They collide with the initial velocities shown. The coefficient of restitution is e = 0.75. Suppose that (VA)1 = 6 m/s, (VB)₁ = 7 m/s. (Figure 1) Determine the magnitude of the velocity of A just after impact. Determine the angle between the x axis and the velocity of A just after impact, measured clockwise from the negative x axis. Determine the magnitude of the velocity of B just after impact. Determine the angle between the x axis and the velocity of B just after impact, measured clockwise from the positive x axis. (VB)1 B (VA)1 60° Line of impactarrow_forward
- A hot plane surface is maintained at 100°C, and it is exposed to air at 25°C.The combined heat transfer coefficient between the surface and the air is 25W/m²·K. (same as above). In this task, you are asked to design fins to cool asurface by attaching 3 cm-long, 0.25 cm-diameter aluminum pin fins (thermalconductivity, k = 237 W/m·K) with a center-to-center distance of 0.6 cm. (Tip:do not correct the length). Determine the rate of heat transfer from thefinned structure to the air for a 1 m x 1 m section of the plate.arrow_forwardHeat is generated uniformly in a 4 cm-diameter, 16-cm long solid bar (k=2.4 W/m-K). The temperaturesat the center and at the surface of the bar are measured to be 210 oC and 45 oC, respectively. Calculatethe rate of heat generation within the bar. Solve the relevant energy balance equation and the boundaryconditions to calculate the rate of heat generation within the bar. (6 pts)arrow_forwardA hot plane surface is maintained at 100°C, and it is exposed to air at 25°C. The combined heat transfercoefficient between the surface and the air is 25 W/m²·K. You are tasked with designing an insulatingmaterial to cover the surface in order to reduce the heat transfer rate by 90%, meaning only 10% of theheat transfer would occur compared to the situation without insulation. The available insulating materialhas a thermal conductivity of 0.093 W/m·K. Assuming that the heat transfer coefficient and the surface/airtemperatures remain constant, calculate the required thickness of the insulating material in centimeters.arrow_forward
- The euler parameter in the image describes the orientation of N in the reference frame of U. How do I find the euler parameters that describe the orientation of U in the reference frame of N from the given information in the image.arrow_forwardFpull Ө A person, weighing 155 lb, is being lifted by a rope thrown. over a tree branch as shown (drawing not to scale). If the static coefficient of friction between the rope and the tree branch is us = 0.67, and the 0 = 45°. Determine the pulling force required to start lifting the person and the pulling force required to keep the person from falling? Pulling force to lift the person: Pulling force to keep the person from falling: lb lbarrow_forwardThe car weighs 1630 lbs and drives up the hill at a constant speed. Assuming the static friction coefficient between the wheels and the road is μs = 0.64, determine the steepest angle that the car can climb without slipping if it is.... a.) rear wheel drive b.) front wheel drive c.) four wheel drive a C CC ①⑧ BY NC Dr. Jacob Moore Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 8.75 ft b 3.325 ft C 1.66 ft a.) The steepest angle for rear wheel drive is 0 max degrees. b.) The steepest angle for front wheel drive is Omax degrees. c.) The steepest angle for four wheel drive is Omax degrees. = = =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage LearningRefrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage LearningUnderstanding Motor ControlsMechanical EngineeringISBN:9781337798686Author:Stephen L. HermanPublisher:Delmar Cengage Learning
- Precision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage Learning

Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning

Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning

Understanding Motor Controls
Mechanical Engineering
ISBN:9781337798686
Author:Stephen L. Herman
Publisher:Delmar Cengage Learning

Precision Machining Technology (MindTap Course Li...
Mechanical Engineering
ISBN:9781285444543
Author:Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher:Cengage Learning
Mechanics of Materials Lecture: Beam Design; Author: UWMC Engineering;https://www.youtube.com/watch?v=-wVs5pvQPm4;License: Standard Youtube License