Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf
Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf
9th Edition
ISBN: 9781259989452
Author: Hayt
Publisher: Mcgraw Hill Publishers
bartleby

Concept explainers

Question
Book Icon
Chapter A7, Problem 1P
To determine

The Laplace transform of the given periodic function.

Expert Solution & Answer
Check Mark

Answer to Problem 1P

The Laplace transform of the given periodic function is 8s2+π24(s+π2es+π2e3sse4s1e4s).

Explanation of Solution

Given data:

The given periodic waveform is shown in Figure 1.

Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf, Chapter A7, Problem 1P

The time period of this waveform is T=4 s.

Calculation:

The function expression calculated from the figure is written as,

f1(t)={8cos(ωt) 0t1 s0 1t3 s8cos(ω(t4)) 3t4 s        (1)

Here,

ω is the angular frequency.

The angular frequency is given by,

ω=2πT

Substitute 4 for T in the above equation.

ω=2π4=π2

Substitute π2 for ω in equation (1).

f1(t)={8cos((π2)t) 0t1 s0 1t3 s8cos(π2(t4)) 3t4 s        (2)

The Laplace transform of a periodic signal is written as,

L{f(t)}=11eTsL{f1(t)}        (3)

The Laplace transform of the function f1(t) can be expressed as,

L{f1(t)}=04f1(t)estdt

Substitute {8cos((π2)t) 0t1 s0 1t3 s8cos(π2(t4)) 3t4 s for f1(t) in the above equation.

L{f1(t)}=018cos(π2t)estdt+130estdt+348cos(π2(t4))estdt        (4)

The general form of cosθ is expressed as,

cosθ=ejθ+ejθ2

Substitute π2t for θ in the above relation.

cos(π2t)=ejπ2t+ejπ2t2

Substitute ejπ2t+ejπ2t2 for cos(π2t) in equation (4).

L{f1(t)}=018ejπ2t+ejπ2t2estdt+348ejπ2t+ejπ2t2estdt=401(ejπ2t+ejπ2t)estdt+434(ejπ2(t4)+ejπ2(t4))estdt

The above equation is divided into two parts as,

L{f1(t)}=I1+I2        (5)

The first part I1 is expressed as,

I1=401(ejπ2t+ejπ2t)estdt

The second part I2 is expressed as,

I2=434(ejπ2(t4)+ejπ2(t4))estdt        (6)

Solve for I1.

I1=401(ejπ2t+ejπ2t)estdt=401ejπ2testdt+401ejπ2testdt=401e(sjπ2)tdt+401e(s+jπ2)tdt=4[e(sjπ2)t(sjπ2)]01+4[e(s+jπ2)t(s+jπ2)]01

Solve further as,

I1=4[e(sjπ2)1(sjπ2)]+4[e(s+jπ2)1(s+jπ2)]=4[(e(sjπ2)1)(s+jπ2)+(sjπ2)(e(s+jπ2)1)(s+jπ2)(sjπ2)]=4[(esejπ21)(s+jπ2)+(sjπ2)(esejπ21)(s+jπ2)(sjπ2)]=4[(jes1)(s+jπ2)+(sjπ2)(jes1)(s2+(π2)2)]

Solve further as,

I1=4[s(jes1jes1)+jπ2(jes1jes+1)(s2+(π2)2)]=4[2s+jπ2(2jes)(s2+(π2)2)]=8(s+π2es)(s2+(π2)2)

Solve equation (6) for I2 as,

I2=434(ejπ2(t4)+ejπ2(t4))estdt=434ejπ2(t4)estdt+434ejπ2(t4)estdt=434ej2πe(sjπ2)tdt+434ej2πe(s+jπ2)tdt=434e(sjπ2)tdt+434e(s+jπ2)tdt

Solve further as,

I2=4[e(sjπ2)t(sjπ2)]34+4[e(s+jπ2)t(s+jπ2)]34=4[e(sjπ2)4e(sjπ2)3(sjπ2)]+4[e(s+jπ2)4e(s+jπ2)3(s+jπ2)]=4[(e4sej2πe3sej3π2)(s+jπ2)+(sjπ2)(e4sej2πe3sej3π2)(s+jπ2)(sjπ2)]=4[(e4s+je3s)(s+jπ2)+(sjπ2)(e4sje3s)(s2+(π2)2)]

Solve further as,

I2=4[s(e4s+je3s+e4sje3s)+jπ2(e4s+je3s+e4sje3s)(s2+(π2)2)]=4[2se4sπ22e3s(s2+(π2)2)]=8(se4sπ2e3s)s2+(π2)2

Substitute 8(s+π2es)(s2+(π2)2) for I1 and 8(se4sπ2e3s)s2+(π2)2 for I2 in equation (5).

L{f1(t)}=8(s+π2es)(s2+(π2)2)+8(se4sπ2e3s)s2+(π2)2

The Laplace transform of f(t) is F(s) and the Laplace transform of f1(t) is F1(s).

Substitute F1(s) for L{f1(t)} in the above equation.

F1(s)=8(s+π2esse4s+π2e3s)s2+(π2)2=8s2+π24(s+π2es+π2e3sse4s)

Substitute F(s) for L{f(t)} and F1(s) for L{f1(t)} in equation in equation (3).

F(s)=11eTsF1(s)

Substitute 8s2+π24(s+π2es+π2e3sse4s) for F1(s) in the above equation.

F(s)=11eTs(8s2+π24(s+π2es+π2e3sse4s))=8s2+π24(s+π2es+π2e3sse4s1eTs)

Substitute 4 for T in the above equation.

F(s)=8s2+π24(s+π2es+π2e3sse4s1e4s)

Conclusion:

Therefore, the Laplace transform of the given periodic function is. 8s2+π24(s+π2es+π2e3sse4s1e4s).

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
No chatgpt pls will upvote
circuit find value of VAB using Super Position Theorem
dc circuit vth rth rl thevenin and then maximum transer and value of rl

Chapter A7 Solutions

Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf

Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,