CALCULUS AND ITS APPLICATIONS BRIEF
12th Edition
ISBN: 9780135998229
Author: BITTINGER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter A, Problem 85E
Factor.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A ladder 25 feet long is leaning against the wall of a building. Initially, the foot of the ladder is 7 feet from the wall. The foot of the ladder begins to slide at a rate of 2 ft/sec, causing the top of the ladder to slide down the wall. The location of the foot of the ladder, its x coordinate, at time t seconds is given by
x(t)=7+2t.
wall
y(1)
25 ft. ladder
x(1)
ground
(a) Find the formula for the location of the top of the ladder, the y coordinate, as a function of time t. The formula for y(t)= √ 25² - (7+2t)²
(b) The domain of t values for y(t) ranges from 0
(c) Calculate the average velocity of the top of the ladder on each of these time intervals (correct to three decimal places):
. (Put your cursor in the box, click and a palette will come up to help you enter your symbolic answer.)
time interval
ave velocity
[0,2]
-0.766
[6,8]
-3.225
time interval
ave velocity
-1.224
-9.798
[2,4]
[8,9]
(d) Find a time interval [a,9] so that the average velocity of the top of the ladder on this…
Total marks 15
3.
(i)
Let FRN Rm be a mapping and x = RN is a given
point. Which of the following statements are true? Construct counterex-
amples for any that are false.
(a)
If F is continuous at x then F is differentiable at x.
(b)
If F is differentiable at x then F is continuous at x.
If F is differentiable at x then F has all 1st order partial
(c)
derivatives at x.
(d) If all 1st order partial derivatives of F exist and are con-
tinuous on RN then F is differentiable at x.
[5 Marks]
(ii) Let mappings
F= (F1, F2) R³ → R² and
G=(G1, G2) R² → R²
:
be defined by
F₁ (x1, x2, x3) = x1 + x²,
G1(1, 2) = 31,
F2(x1, x2, x3) = x² + x3,
G2(1, 2)=sin(1+ y2).
By using the chain rule, calculate the Jacobian matrix of the mapping
GoF R3 R²,
i.e., JGoF(x1, x2, x3). What is JGOF(0, 0, 0)?
(iii)
[7 Marks]
Give reasons why the mapping Go F is differentiable at
(0, 0, 0) R³ and determine the derivative matrix D(GF)(0, 0, 0).
[3 Marks]
5.
(i)
Let f R2 R be defined by
f(x1, x2) = x² - 4x1x2 + 2x3.
Find all local minima of f on R².
(ii)
[10 Marks]
Give an example of a function f: R2 R which is not bounded
above and has exactly one critical point, which is a minimum. Justify briefly
Total marks 15
your answer.
[5 Marks]
Chapter A Solutions
CALCULUS AND ITS APPLICATIONS BRIEF
Ch. A - Express as an equivalent expression without...Ch. A - Express as an equivalent expression without...Ch. A - Express as an equivalent expression without...Ch. A - Express as an equivalent expression without...Ch. A - Prob. 5ECh. A - Prob. 6ECh. A - Prob. 7ECh. A - Express as an equivalent expression without...Ch. A - Express as an equivalent expression without...Ch. A - Express as an equivalent expression without...
Ch. A - Prob. 11ECh. A - Prob. 12ECh. A - Express as an equivalent expression without...Ch. A - Express as an equivalent expression without...Ch. A - Express as an equivalent expression without,...Ch. A - Express as an equivalent expression without,...Ch. A - Express as an equivalent expression without,...Ch. A - Express as an equivalent expression without,...Ch. A - Express as an equivalent expression without,...Ch. A - Express as an equivalent expression without,...Ch. A - Express as an equivalent expression without,...Ch. A - Express as an equivalent expression without,...Ch. A - Express as an equivalent expression without,...Ch. A - Express as an equivalent expression without,...Ch. A - Prob. 25ECh. A - Express as an equivalent expression without,...Ch. A - Prob. 27ECh. A - Multiply. t3t4Ch. A - Multiply. x7xCh. A - Multiply. x5xCh. A - Multiply.
31.
Ch. A - Multiply. 4t32t4Ch. A - Multiply.
33.
Ch. A - Multiply. x3xx3Ch. A - Multiply.
35.
Ch. A - Multiply. ekekCh. A - Divide. 37. x8x2Ch. A - Divide.
38.
Ch. A - Divide. x2x5Ch. A - Divide. x3x7Ch. A - Divide.
41.
Ch. A - Divide. tktkCh. A - Divide. ete4Ch. A - Divide.
44.
Ch. A - Divide. t6t8Ch. A - Divide. t5t7Ch. A - Prob. 47ECh. A - Prob. 48ECh. A - Prob. 49ECh. A - Prob. 50ECh. A - Simplify. (t2)3Ch. A - Simplify. (t3)4Ch. A - Simplify.
53.
Ch. A - Simplify.
54.
Ch. A - Simplify.
55.
Ch. A - Simplify.
56.
Ch. A - Prob. 57ECh. A - Simplify.
58.
Ch. A - Simplify.
59.
Ch. A - Prob. 60ECh. A - Simplify. (cd32q2)2Ch. A - Simplify.
62.
Ch. A - Prob. 63ECh. A - Multiply. x(1+t)Ch. A - Multiply. (x5)(x2)Ch. A - Multiply. (x4)(x3)Ch. A - Multiply.
67.
Ch. A - Prob. 68ECh. A - Prob. 69ECh. A - Multiply. (3x+4)(x1)Ch. A - Prob. 71ECh. A - Prob. 72ECh. A - Multiply.
73.
Ch. A - Prob. 74ECh. A - Prob. 75ECh. A - Multiply.
76.
Ch. A - Multiply.
77.
Ch. A - Prob. 78ECh. A - Multiply. 5x(x2+3)2Ch. A - Prob. 80ECh. A - Use the following equation for Exercises...Ch. A - Use the following equation for Exercises 81-84....Ch. A - Prob. 83ECh. A - Use the following equation for Exercises...Ch. A - Factor. xxtCh. A - Factor.
86.
Ch. A - Factor. x2+6xy+9y2Ch. A - Factor. x210xy+25y2Ch. A - Factor.
89.
Ch. A - Factor.
90.
Ch. A - Prob. 91ECh. A - Factor.
92.
Ch. A - Prob. 93ECh. A - Factor. 9x2b2Ch. A - Prob. 95ECh. A - Factor.
96.
Ch. A - Factor.
97.
Ch. A - Factor. 2x432Ch. A - Factor. a8b8Ch. A - Prob. 100ECh. A - Prob. 101ECh. A - Prob. 102ECh. A - Factor.
103.
Ch. A - Factor. 2xy250xCh. A - Factor.
105.
Ch. A - Factor. 6x223x+20Ch. A - Factor. x3+8 (Hint: See Exercise 68.)Ch. A - Factor. a327 (Hint: See Exercise 67.)Ch. A - Factor. y364t3Ch. A - Factor.
110.
Ch. A - Factor. 3x36x2x+2Ch. A - Factor.
112.
Ch. A - Factor. x35x29x+45Ch. A - Factor. t3+3t225t75Ch. A - Solve.
115.
Ch. A - Solve. 8x+9=4x70Ch. A - Solve.
117.
Ch. A - Solve. 5x2+3x=2x+64xCh. A - Solve.
119.
Ch. A - Solve.
120.
Ch. A - Solve.
121.
Ch. A - Solve. x+0.05x=210Ch. A - Solve.
123.
Ch. A - Solve. 7x(x2)(2x+3)=0Ch. A - Solve.
125.
Ch. A - Solve. 2t2=9+t2Ch. A - Solve.
127.
Ch. A - Solve.
128.
Ch. A - Solve.
129.
Ch. A - Solve.
130.
Ch. A - Solve.
131.
Ch. A - Solve.
132.
Ch. A - Solve. (x3)2=x2+2x+1Ch. A - Solve. (x5)2=x2+x+3Ch. A - Solve. 4xx+5+100x2+5xCh. A - Solve.
136.
Ch. A - Solve. 50x50x2=4xCh. A - Solve.
138.
Ch. A - Solve.
139.
Ch. A - Solve. 535x2=0Ch. A - Solve.
141.
Ch. A - Solve. x2=144Ch. A - Solve.
143.
Ch. A - Solve.
144.
Ch. A - Solve. 4t2=49Ch. A - Solve. 100k2=169Ch. A - Solve.
147.
Ch. A - Prob. 148ECh. A - Solve.
149.
Ch. A - Solve.
150.
Ch. A - Solve.
151.
Ch. A - Solve. (6x+5)2=400Ch. A - Solve.
153.
Ch. A - Solve. (14y)2=2Ch. A - Solve.
155.
Ch. A - Solve.
156.
Ch. A - Solve.
157.
Ch. A - Solve. 3x3+3x17x9Ch. A - Solve. 7x4Ch. A - Prob. 160ECh. A - Solve.
161.
Ch. A - Solve. 9x+3x24Ch. A - Solve. 2x75x9Ch. A - Solve. 10x313x8Ch. A - Solve.
165.
Ch. A - Solve.
166.
Ch. A - Solve. 83x+214Ch. A - Prob. 168ECh. A - Solve.
169.
Ch. A - Solve.
170.
Ch. A - Prob. 171ECh. A - Solve.
172.
Ch. A - Prob. 173ECh. A -
174. Investment increase. An investment is made...Ch. A - 175. Total revenue. Sunshine Products determines...Ch. A - Prob. 176ECh. A - Weight gain. After a 6% gain in weight, an elk...Ch. A - Weight gain. After a 7% gain in weight, a deer...Ch. A - Population increase. After a 2% increase, the...Ch. A - Population increase. After a 3% increase, the...Ch. A - Grade average. To get a B in a course, a students...Ch. A - 182. Grade average. To get a C in a course, a...Ch. A - Auditorium seating. The seats at Ardon Auditorium...Ch. A -
184. Tiling a room. The conference room at the...Ch. A - Prob. 185ECh. A - Prob. 186ECh. A - Prob. 187ECh. A - Prob. 188ECh. A - Right triangles. The lengths of the two legs, a...Ch. A - Right triangles. One leg of a right triangle is 3...
Additional Math Textbook Solutions
Find more solutions based on key concepts
A categorical variable has three categories, with the following frequencies of occurrence: a. Compute the perce...
Basic Business Statistics, Student Value Edition
Answer each of the following and explain your answer. a. How many lines can contain a particular segment? b. Ho...
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Other techniques Evaluate the following limits, where a and b are fixed real numbers. 49. limxaxaxa,a0
Calculus: Early Transcendentals (2nd Edition)
a. How many different 7-place license plates are possible if the first 2 places are for letters and the other 5...
A First Course in Probability (10th Edition)
Here is the region of integration of the integral
Rewrite the integral as an equivalent iterated integral in ...
University Calculus: Early Transcendentals (4th Edition)
Fill in each blank so that the resulting statement is true. Any set of ordered pairs is called a/an ____.The se...
Algebra and Trigonometry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Total marks 15 4. : Let f R2 R be defined by f(x1, x2) = 2x²- 8x1x2+4x+2. Find all local minima of f on R². [10 Marks] (ii) Give an example of a function f R2 R which is neither bounded below nor bounded above, and has no critical point. Justify briefly your answer. [5 Marks]arrow_forward4. Let F RNR be a mapping. (i) x ЄRN ? (ii) : What does it mean to say that F is differentiable at a point [1 Mark] In Theorem 5.4 in the Lecture Notes we proved that if F is differentiable at a point x E RN then F is continuous at x. Proof. Let (n) CRN be a sequence such that xn → x ЄERN as n → ∞. We want to show that F(xn) F(x), which means F is continuous at x. Denote hnxn - x, so that ||hn|| 0. Thus we find ||F(xn) − F(x)|| = ||F(x + hn) − F(x)|| * ||DF (x)hn + R(hn) || (**) ||DF(x)hn||+||R(hn)||| → 0, because the linear mapping DF(x) is continuous and for all large nЄ N, (***) ||R(hn) || ||R(hn) || ≤ → 0. ||hn|| (a) Explain in details why ||hn|| → 0. [3 Marks] (b) Explain the steps labelled (*), (**), (***). [6 Marks]arrow_forward4. In Theorem 5.4 in the Lecture Notes we proved that if F: RN → Rm is differentiable at x = RN then F is continuous at x. Proof. Let (xn) CRN be a sequence such that x → x Є RN as n → ∞. We want F(x), which means F is continuous at x. to show that F(xn) Denote hn xnx, so that ||hn||| 0. Thus we find ||F (xn) − F(x) || (*) ||F(x + hn) − F(x)|| = ||DF(x)hn + R(hn)|| (**) ||DF(x)hn|| + ||R(hn) || → 0, because the linear mapping DF(x) is continuous and for all large n = N, |||R(hn) || ≤ (***) ||R(hn)|| ||hn|| → 0. Explain the steps labelled (*), (**), (***) [6 Marks] (ii) Give an example of a function F: RR such that F is contin- Total marks 10 uous at x=0 but F is not differentiable at at x = 0. [4 Marks]arrow_forward
- 3. Let f R2 R be a function. (i) Explain in your own words the relationship between the existence of all partial derivatives of f and differentiability of f at a point x = R². (ii) Consider R2 → R defined by : [5 Marks] f(x1, x2) = |2x1x2|1/2 Show that af af -(0,0) = 0 and -(0, 0) = 0, Jx1 მx2 but f is not differentiable at (0,0). [10 Marks]arrow_forward(1) Write the following quadratic equation in terms of the vertex coordinates.arrow_forwardThe final answer is 8/π(sinx) + 8/3π(sin 3x)+ 8/5π(sin5x)....arrow_forward
- Keity x२ 1. (i) Identify which of the following subsets of R2 are open and which are not. (a) A = (2,4) x (1, 2), (b) B = (2,4) x {1,2}, (c) C = (2,4) x R. Provide a sketch and a brief explanation to each of your answers. [6 Marks] (ii) Give an example of a bounded set in R2 which is not open. [2 Marks] (iii) Give an example of an open set in R2 which is not bounded. [2 Marksarrow_forward2. (i) Which of the following statements are true? Construct coun- terexamples for those that are false. (a) sequence. Every bounded sequence (x(n)) nEN C RN has a convergent sub- (b) (c) (d) Every sequence (x(n)) nEN C RN has a convergent subsequence. Every convergent sequence (x(n)) nEN C RN is bounded. Every bounded sequence (x(n)) EN CRN converges. nЄN (e) If a sequence (xn)nEN C RN has a convergent subsequence, then (xn)nEN is convergent. [10 Marks] (ii) Give an example of a sequence (x(n))nEN CR2 which is located on the parabola x2 = x², contains infinitely many different points and converges to the limit x = (2,4). [5 Marks]arrow_forward2. (i) What does it mean to say that a sequence (x(n)) nEN CR2 converges to the limit x E R²? [1 Mark] (ii) Prove that if a set ECR2 is closed then every convergent sequence (x(n))nen in E has its limit in E, that is (x(n)) CE and x() x x = E. [5 Marks] (iii) which is located on the parabola x2 = = x x4, contains a subsequence that Give an example of an unbounded sequence (r(n)) nEN CR2 (2, 16) and such that x(i) converges to the limit x = (2, 16) and such that x(i) # x() for any i j. [4 Marksarrow_forward
- 1. (i) which are not. Identify which of the following subsets of R2 are open and (a) A = (1, 3) x (1,2) (b) B = (1,3) x {1,2} (c) C = AUB (ii) Provide a sketch and a brief explanation to each of your answers. [6 Marks] Give an example of a bounded set in R2 which is not open. (iii) [2 Marks] Give an example of an open set in R2 which is not bounded. [2 Marks]arrow_forward2. if limit. Recall that a sequence (x(n)) CR2 converges to the limit x = R² lim ||x(n)x|| = 0. 818 - (i) Prove that a convergent sequence (x(n)) has at most one [4 Marks] (ii) Give an example of a bounded sequence (x(n)) CR2 that has no limit and has accumulation points (1, 0) and (0, 1) [3 Marks] (iii) Give an example of a sequence (x(n))neN CR2 which is located on the hyperbola x2 1/x1, contains infinitely many different Total marks 10 points and converges to the limit x = (2, 1/2). [3 Marks]arrow_forward3. (i) Consider a mapping F: RN Rm. Explain in your own words the relationship between the existence of all partial derivatives of F and dif- ferentiability of F at a point x = RN. (ii) [3 Marks] Calculate the gradient of the following function f: R2 → R, f(x) = ||x||3, Total marks 10 where ||x|| = √√√x² + x/2. [7 Marks]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice UniversityAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
Elementary Algebra
Algebra
ISBN:9780998625713
Author:Lynn Marecek, MaryAnne Anthony-Smith
Publisher:OpenStax - Rice University
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Whiteboard Math: The Basics of Factoring; Author: Whiteboard Math;https://www.youtube.com/watch?v=-VKAYqzRp4o;License: Standard YouTube License, CC-BY
Factorisation using Algebraic Identities | Algebra | Mathacademy; Author: Mathacademy;https://www.youtube.com/watch?v=BEp1PaU-qEw;License: Standard YouTube License, CC-BY
How To Factor Polynomials The Easy Way!; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=U6FndtdgpcA;License: Standard Youtube License