a)
Interpretation:
Assuming that halogens add to
Concept introduction:
Alkynes when treated with one equivalent of a halogen yield a dihaloalkene as the product. They react with two equivalents of the halogens to yield a tetrahaloalkane derivative. In the first step of the addition reaction the nucleophilic attack of the π electrons of the double/triple bond in alkene/alkyne on a halogen results in the formation of a cyclic halonium ion with the simultaneous elimination of a halide ion. In the second step the halide ion attacks the cyclic halonium ion to yield the product.
To propose:
A mechanism and to predict the product(s) expected for the reaction in which two equivalents of Br2 adds to 2-butyne assuming that bromine adds to alkynes in the same manner as they add to alkenes.
b)
Interpretation:
Assuming that halogens add to alkynes in the same manner as they add to alkenes, a mechanism is to be proposed and the product(s) expected for the reaction in which two equivalents of Cl2 adds to 1-phenylpropyne is/are to be predicted.
Concept introduction:
Alkynes when treated with one equivalent of a halogen yield a dihaloalkene as the product. They react with two equivalents of the reagents to yield a tetrahaloalkane as the product. In the first step of the addition reaction, the nucleophilic attack of the π electrons of the double/triple bond in alkene/alkyne on a halogen results in the formation of a cyclic halonium ion with the simultaneous elimination of a halide ion. In the second step the halide ion attacks the cyclic halonium ion to yield the product.
To propose:
A mechanism and to predict the product(s) expected for the reaction in which two equivalents of Cl2 adds to 1-phenylpropyne assuming that chlorine adds to alkynes in the same manner as they add to alkenes.
c)
Interpretation:
Assuming that halogens add to alkynes in the same manner as they add to alkenes, a mechanism is to be proposed and the product(s) expected for the reaction in which two equivalents of Br2 adds to 1-pentyne is/are to be predicted.
Concept introduction:
Alkynes when treated with one equivalent of a halogen yield a dihaloalkene as the product. They react with two equivalents of the reagents to yield a tetrahaloalkane as the product. In the first step of the addition reaction the nucleophilic attack of the π electrons of the double/triple bond in alkene/alkyne on a halogen results in the formation of a cyclic halonium ion with the simultaneous elimination of a halide ion. In the second step the halide ion attacks the cyclic halonium ion to yield the product.
To propose:
A mechanism and to predict the product(s) expected for the reaction in which two equivalents of Br2 adds to 1-pentyne assuming that bromine adds to alkynes in the same manner as they add to alkenes.

Trending nowThis is a popular solution!

Chapter 9 Solutions
ORGANIC CHEMISTRY-EBOOK>I<
- Germanium (Ge) is a semiconductor with a bandgap of 2.2 eV. How could you dope Ge to make it a p-type semiconductor with a larger bandgap? Group of answer choices It is impossible to dope Ge and have this result in a larger bandgap. Dope the Ge with silicon (Si) Dope the Ge with gallium (Ga) Dope the Ge with phosphorus (P)arrow_forwardWhich of the following semiconductors would you choose to have photons with the longest possible wavelengths be able to promote electrons to the semiconductor's conduction band? Group of answer choices Si Ge InSb CdSarrow_forwardWhich of the following metals is the only one with all of its bands completely full? Group of answer choices K Na Ca Alarrow_forward
- 2. Specify the solvent and reagent(s) required to carry out each of the following FGI. If two reagent sets must be used for the FGI, specify the solvent and reagent(s) for each reagent set. If a reaction cannot be carried out with reagents (sets) class, write NP (not possible) in the solvent box for reagent set #1. Use the letter abbreviation for each solvent; use a number abbreviation for reagent(s). Solvents: CH2Cl2 (A); Reagents: H₂O (B); CH3CO₂H (D) NaHCO3 (4); Hg(OAc)2 (5); HBr (1); R₂BH (6); H2SO4 (2); CH3OH (C); Br₂ (3); H₂O₂ / HO- (7); NaBH4 (8) Reagent Set #1 Reagent Set #2 FGI OH - α-α Br + enant Solvent Reagent(s) Solvent Reagent(s)arrow_forwardBased on concepts from Lecture 3-5, which of the following ionic compounds should be most soluble in water? Group of answer choices MgO BeO CaO BaOarrow_forwardFrom an energy standpoint, which two process - in the correct order - are involved in the dissolving of an ionic compound crystal? Group of answer choices Water coordination to the ions followed by sublimation into the gas phase Sublimation of the crystal into gas-phase ions followed by water coordination to the ions Ion dissociation from the crystal followed by water coordination to the ions Water coordination to the ions followed by ion dissociation from the crystalarrow_forward
- For which Group 2 metal (M), is this process the most exothermic? M2+(g) + O2−(g) + CO2(g) → MO(s) + CO2(g) Group of answer choices M = Sr M = Mg M = Ca M = Baarrow_forward2. Specify the solvent and reagent(s) required to carry out each of the following FGI. If two reagent sets must be used for the FGI, specify the solvent and reagent(s) for each reagent set. If a reaction cannot be carried out with reagents (sets) class, write NP (not possible) in the solvent box for reagent set #1. Use the letter abbreviation for each solvent; use a number abbreviation for reagent(s). Solvents: CH2Cl2 (A); H₂O (B); Reagents: HBr (1); H2SO4 (2); CH3OH (C); Br₂ (3); CH3CO₂H (D) NaHCO3 (4); Hg(OAc)2 (5); R₂BH (6); H₂O₂ / HO- (7); NaBH4 (8) Reagent Set #1 Reagent Set #2 FGI Solvent Reagent(s) Solvent Reagent(s) HO OHarrow_forwardFor which of the following ionic compounds would you expect the smallest difference between its theoretical and experimental lattice enthalpies? (You may assume these all have the same unit cell structure.) Electronegativities: Ca (1.0), Fe (1.8), Mg (1.2), O (3.5), S (2.5), Zn (1.6) Group of answer choices ZnO MgS CaO FeSarrow_forward
- In the Born-Haber cycle for KCl crystal formation, what enthalpy component must be divided by two? Group of answer choices KCl(s) enthalpy of formation Ionization energy for K(g) K(s) sublimation enthalpy Cl2 bond dissociation enthalpyarrow_forward2. Specify the solvent and reagent(s) required to carry out each of the following FGI. If two reagent sets must be used for the FGI, specify the solvent and reagent(s) for each reagent set. If a reaction cannot be carried out with reagents (sets) class, write NP (not possible) in the solvent box for reagent set #1. Use the letter abbreviation for each solvent; use a number abbreviation for reagent(s). Solvents: CH2Cl2 (A); H₂O (B); Reagents: HBr (1); R₂BH (6); H2SO4 (2); CH3OH (C); Br₂ (3); CH3CO₂H (D) NaHCO3 (4); Hg(OAc)2 (5); H₂O₂ / HO (7); NaBH4 (8) Reagent Set #1 Reagent Set #2 FGI хот Br Solvent Reagent(s) Solvent Reagent(s)arrow_forwardWhat is the correct chemical equation for the lattice formation reaction for CaBr2? Group of answer choices Ca2+(g) + 2 Br−(g) → CaBr2(s) ½ Ca2+(g) + Br−(g) → ½ CaBr2(s) Ca(s) + Br2(l) → CaBr2(s) Ca(s) + 2 Br−(g) → CaBr2(s)arrow_forward
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning



