
Calculus (MindTap Course List)
8th Edition
ISBN: 9781285740621
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9.R, Problem 1CC
To determine
a)
To explain:
The
To determine
b)
To explain:
The order of the differential equation.
To determine
c)
To explain:
An initial condition.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Given lim x-4 f (x) = 1,limx-49 (x) = 10, and lim→-4 h (x) = -7 use the limit properties
to find lim→-4
1
[2h (x) — h(x) + 7 f(x)] :
-
h(x)+7f(x)
3
O DNE
17. Suppose we know that the graph below is the graph of a solution to dy/dt = f(t).
(a) How much of the slope field can
you sketch from this information?
[Hint: Note that the differential
equation depends only on t.]
(b) What can you say about the solu-
tion with y(0) = 2? (For example,
can you sketch the graph of this so-
lution?)
y(0) = 1
y
AN
(b) Find the (instantaneous) rate of change of y at x = 5.
In the previous part, we found the average rate of change for several intervals of decreasing size starting at x = 5. The instantaneous rate of
change of fat x = 5 is the limit of the average rate of change over the interval [x, x + h] as h approaches 0. This is given by the derivative in the
following limit.
lim
h→0
-
f(x + h) − f(x)
h
The first step to find this limit is to compute f(x + h). Recall that this means replacing the input variable x with the expression x + h in the rule
defining f.
f(x + h) = (x + h)² - 5(x+ h)
=
2xh+h2_
x² + 2xh + h² 5✔
-
5
)x - 5h
Step 4
-
The second step for finding the derivative of fat x is to find the difference f(x + h) − f(x).
-
f(x + h) f(x) =
= (x²
x² + 2xh + h² -
])-
=
2x
+ h² - 5h
])x-5h) - (x² - 5x)
=
]) (2x + h - 5)
Macbook Pro
Chapter 9 Solutions
Calculus (MindTap Course List)
Ch. 9.1 - Show that y=23ex+e2x is a solution of the...Ch. 9.1 - Verify that y=tcostt is a solution of the...Ch. 9.1 - a For what values of r does the function y=erx...Ch. 9.1 - Prob. 4ECh. 9.1 - Which of the following functions are solutions of...Ch. 9.1 - a Show that every member of the family of...Ch. 9.1 - a What can you say about a solution of the...Ch. 9.1 - a What can you say about the graph of a solution...Ch. 9.1 - Prob. 9ECh. 9.1 - The Fitzhugh-Nagumo model for the electrical...
Ch. 9.1 - Explain why the functions with the given graphs...Ch. 9.1 - The function with the given graph is a solution of...Ch. 9.1 - Match the differential equations with the solution...Ch. 9.1 - Suppose you have just poured a cup of freshly...Ch. 9.1 - Prob. 15ECh. 9.1 - Von Bertalanffys equation states that the rate of...Ch. 9.1 - Differential equations have been used extensively...Ch. 9.2 - A direction field for the differential equation...Ch. 9.2 - A direction field for the differential equation...Ch. 9.2 - Prob. 3ECh. 9.2 - Prob. 4ECh. 9.2 - 36 Match the differential equation with its...Ch. 9.2 - 36 Match the differential equation with its...Ch. 9.2 - Prob. 7ECh. 9.2 - Prob. 8ECh. 9.2 - Prob. 9ECh. 9.2 - 910 Sketch a direction field for the differential...Ch. 9.2 - Prob. 11ECh. 9.2 - Prob. 12ECh. 9.2 - Prob. 13ECh. 9.2 - Prob. 14ECh. 9.2 - Prob. 15ECh. 9.2 - Prob. 16ECh. 9.2 - Use a computer algebra system to draw a direction...Ch. 9.2 - Make a rough sketch of a direction field for the...Ch. 9.2 - a Use Eulers method with each of the following...Ch. 9.2 - A direction field for a differential equation is...Ch. 9.2 - Prob. 21ECh. 9.2 - Prob. 22ECh. 9.2 - Use Eulers method with step size 0.1 to estimate...Ch. 9.2 - Prob. 24ECh. 9.2 - a Program a calculator or computer to use Eulers...Ch. 9.2 - a Program your computer algebra system, using...Ch. 9.2 - The figure shows a circuit containing an...Ch. 9.2 - In Exercise 9.1.14 we considered a 95C cup of...Ch. 9.3 - 110 Solve the differential equation. dydx=3x2y2Ch. 9.3 - Prob. 2ECh. 9.3 - Prob. 3ECh. 9.3 - 110 Solve the differential equation. y+xey=0Ch. 9.3 - Prob. 5ECh. 9.3 - Prob. 6ECh. 9.3 - Prob. 7ECh. 9.3 - Prob. 8ECh. 9.3 - Prob. 9ECh. 9.3 - Prob. 10ECh. 9.3 - 1118 Find the solution of the differential...Ch. 9.3 - Prob. 12ECh. 9.3 - Prob. 13ECh. 9.3 - Prob. 14ECh. 9.3 - 1118 Find the solution of the differential...Ch. 9.3 - Prob. 16ECh. 9.3 - Prob. 17ECh. 9.3 - Prob. 18ECh. 9.3 - Find an equation of the curve that passes through...Ch. 9.3 - Find the function f such that...Ch. 9.3 - Prob. 21ECh. 9.3 - Prob. 22ECh. 9.3 - Prob. 23ECh. 9.3 - Prob. 24ECh. 9.3 - Prob. 25ECh. 9.3 - Prob. 26ECh. 9.3 - a Use a computer algebra system to draw a...Ch. 9.3 - 2728 a Use a computer algebra system to draw a...Ch. 9.3 - 2932 Find the orthogonal trajectories of the...Ch. 9.3 - 2932 Find the orthogonal trajectories of the...Ch. 9.3 - 2932 Find the orthogonal trajectories of the...Ch. 9.3 - 2932 Find the orthogonal trajectories of the...Ch. 9.3 - 3335 An integral equation is an equation that...Ch. 9.3 - 3335 An integral equation is an equation that...Ch. 9.3 - Prob. 35ECh. 9.3 - Find a function f such that f(3)=2 and...Ch. 9.3 - Prob. 37ECh. 9.3 - In Exercise 9.2.28 we discussed a differential...Ch. 9.3 - Prob. 39ECh. 9.3 - In an elementary chemical reaction, single...Ch. 9.3 - In contrast to the situation of Exercise 40,...Ch. 9.3 - Prob. 42ECh. 9.3 - Prob. 43ECh. 9.3 - A certain small country has 10 billion in paper...Ch. 9.3 - Prob. 45ECh. 9.3 - Prob. 46ECh. 9.3 - A vat with 500 gallons of beer contains 4 alcohol...Ch. 9.3 - A tank contains 1000 L of pure water. Brine that...Ch. 9.3 - Prob. 49ECh. 9.3 - An object of mass m is moving horizontally through...Ch. 9.3 - Prob. 51ECh. 9.3 - Prob. 52ECh. 9.3 - Let A(t) be the area of a tissue culture at time t...Ch. 9.3 - Prob. 54ECh. 9.4 - 12 A population grows according to the given...Ch. 9.4 - 1-2 A population grows according to the given...Ch. 9.4 - Suppose that a population develops according to...Ch. 9.4 - Suppose that a population grows according to a...Ch. 9.4 - The Pacific halibut fishery has been modeled by...Ch. 9.4 - Suppose a population P(t) satisfies...Ch. 9.4 - Suppose a population grows according to a logistic...Ch. 9.4 - The table gives the number of yeast cells in a new...Ch. 9.4 - Prob. 9ECh. 9.4 - Prob. 10ECh. 9.4 - One model for the spread of a rumor is that the...Ch. 9.4 - Biologists stocked a lake with 400 fish and...Ch. 9.4 - Prob. 13ECh. 9.4 - Prob. 14ECh. 9.4 - Prob. 15ECh. 9.4 - Prob. 16ECh. 9.4 - Consider a population P=P(t) with constant...Ch. 9.4 - Let c be a positive number. A differential...Ch. 9.4 - Lets modify the logistic differential equation of...Ch. 9.4 - Consider the differential equation...Ch. 9.4 - There is considerable evidence to support the...Ch. 9.4 - Prob. 22ECh. 9.4 - In a seasonal-growth model, a periodic function of...Ch. 9.4 - Prob. 24ECh. 9.4 - Prob. 25ECh. 9.5 - 14 Determine whether the differential equation is...Ch. 9.5 - Prob. 2ECh. 9.5 - Prob. 3ECh. 9.5 - Prob. 4ECh. 9.5 - 514 Solve the differential equation. y+y=1Ch. 9.5 - 514 Solve the differential equation. yy=exCh. 9.5 - 514 Solve the differential equation. y=xyCh. 9.5 - 514 Solve the differential equation....Ch. 9.5 - Prob. 9ECh. 9.5 - Prob. 10ECh. 9.5 - Prob. 11ECh. 9.5 - Prob. 12ECh. 9.5 - Prob. 13ECh. 9.5 - Prob. 14ECh. 9.5 - Prob. 15ECh. 9.5 - Prob. 16ECh. 9.5 - Prob. 17ECh. 9.5 - Prob. 18ECh. 9.5 - 1520 Solve the initial-value problem....Ch. 9.5 - Prob. 20ECh. 9.5 - Prob. 21ECh. 9.5 - Prob. 22ECh. 9.5 - A Bernoulli differential equation named after...Ch. 9.5 - 2425 Use the method of Exercise 23 to solve the...Ch. 9.5 - Prob. 25ECh. 9.5 - Prob. 26ECh. 9.5 - Prob. 27ECh. 9.5 - Prob. 28ECh. 9.5 - Prob. 29ECh. 9.5 - Prob. 30ECh. 9.5 - Prob. 31ECh. 9.5 - Prob. 32ECh. 9.5 - In Section 9.3 we looked at mixing problems in...Ch. 9.5 - Prob. 34ECh. 9.5 - An object with mass m is dropped from rest and we...Ch. 9.5 - If we ignore air resistance, we can conclude that...Ch. 9.5 - Prob. 37ECh. 9.5 - To account for seasonal variation in the logistic...Ch. 9.6 - For each predator-prey system, determine which of...Ch. 9.6 - Each system of differential equations is a model...Ch. 9.6 - Prob. 3ECh. 9.6 - Prob. 4ECh. 9.6 - 56 A phase trajectory is shown for populations of...Ch. 9.6 - 56 A phase trajectory is shown for populations of...Ch. 9.6 - 78 Graphs of populations of two species are shown....Ch. 9.6 - Prob. 8ECh. 9.6 - Prob. 9ECh. 9.6 - Populations of aphids and ladybugs are modeled by...Ch. 9.6 - In Example 1 we used Lotka-Volterra equations to...Ch. 9.6 - In Exercise 10 we modeled populations of aphids...Ch. 9.R - Prob. 1CCCh. 9.R - Prob. 2CCCh. 9.R - Prob. 3CCCh. 9.R - Prob. 4CCCh. 9.R - Prob. 5CCCh. 9.R - Prob. 6CCCh. 9.R - Prob. 7CCCh. 9.R - Prob. 8CCCh. 9.R - a Write Lotka-Volterra equations to model...Ch. 9.R - Prob. 1TFQCh. 9.R - Prob. 2TFQCh. 9.R - Prob. 3TFQCh. 9.R - Determine whether the statement is true or false....Ch. 9.R - Prob. 5TFQCh. 9.R - Determine whether the statement is true or false....Ch. 9.R - Prob. 7TFQCh. 9.R - Prob. 1ECh. 9.R - a Sketch a direction field for the differential...Ch. 9.R - a A direction field for the differential equation...Ch. 9.R - Prob. 4ECh. 9.R - Prob. 5ECh. 9.R - Prob. 6ECh. 9.R - 58 Solve the differential equation. 2yey2y=2x+3xCh. 9.R - 58 Solve the differential equation. x2yy=2x3e1/xCh. 9.R - 911 Solve the initial-value problem....Ch. 9.R - 911 Solve the initial-value problem....Ch. 9.R - Prob. 11ECh. 9.R - Prob. 12ECh. 9.R - 1314 Find the orthogonal trajectories of the...Ch. 9.R - Prob. 14ECh. 9.R - Prob. 15ECh. 9.R - a The population of the world was 6.1 billion in...Ch. 9.R - Prob. 17ECh. 9.R - Prob. 18ECh. 9.R - One model for the spread of an epidemic is that...Ch. 9.R - Prob. 20ECh. 9.R - Prob. 21ECh. 9.R - Populations of birds and insects are modeled by...Ch. 9.R - Prob. 23ECh. 9.R - Prob. 24ECh. 9.P - Find all functions f such that f is continuous and...Ch. 9.P - Prob. 2PCh. 9.P - Prob. 3PCh. 9.P - Find all functions f that satisfy the equation...Ch. 9.P - Prob. 5PCh. 9.P - A subtangent is a portion of the x-axis that lies...Ch. 9.P - A peach pie is taken out of the oven at 5:00 PM....Ch. 9.P - Snow began to fall during the morning of February...Ch. 9.P - A dog sees a rabbit running in a straight line...Ch. 9.P - a Suppose that the dog in Problem 9 runs twice as...Ch. 9.P - A planning engineer for a new alum plant must...Ch. 9.P - Prob. 12PCh. 9.P - Prob. 13PCh. 9.P - Prob. 14PCh. 9.P - Prob. 15PCh. 9.P - a An outfielder fields a baseball 280 ft away from...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Evaluate the integral using integration by parts. Sx² cos (9x) dxarrow_forwardLet f be defined as follows. y = f(x) = x² - 5x (a) Find the average rate of change of y with respect to x in the following intervals. from x = 4 to x = 5 from x = 4 to x = 4.5 from x = 4 to x = 4.1 (b) Find the (instantaneous) rate of change of y at x = 4. Need Help? Read It Master Itarrow_forwardVelocity of a Ball Thrown into the Air The position function of an object moving along a straight line is given by s = f(t). The average velocity of the object over the time interval [a, b] is the average rate of change of f over [a, b]; its (instantaneous) velocity at t = a is the rate of change of f at a. A ball is thrown straight up with an initial velocity of 128 ft/sec, so that its height (in feet) after t sec is given by s = f(t) = 128t - 16t². (a) What is the average velocity of the ball over the following time intervals? [3,4] [3, 3.5] [3, 3.1] ft/sec ft/sec ft/sec (b) What is the instantaneous velocity at time t = 3? ft/sec (c) What is the instantaneous velocity at time t = 7? ft/sec Is the ball rising or falling at this time? O rising falling (d) When will the ball hit the ground? t = sec Need Help? Read It Watch Itarrow_forward
- Find the slope of the tangent line to the graph of the function at the given point. f(x) = -4x + 5 at (-1, 9) m Determine an equation of the tangent line. y = Need Help? Read It Watch It SUBMIT ANSWERarrow_forwardFind the slope of the tangent line to the graph of the function at the given point. f(x) = 5x-4x² at (-1, -9) m Determine an equation of the tangent line. y = Need Help? Read It Master It SUBMIT ANSWERarrow_forwardFor what value of A and B the function f(x) will be continuous everywhere for the given definition?..arrow_forward
- 2. [-/1 Points] DETAILS MY NOTES SESSCALCET2 6.4.006.MI. Use the Table of Integrals to evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.) 7y2 y² 11 dy Need Help? Read It Master It SUBMIT ANSWER 3. [-/1 Points] DETAILS MY NOTES SESSCALCET2 6.4.009. Use the Table of Integrals to evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.) tan³(12/z) dz Need Help? Read It Watch It SUBMIT ANSWER 4. [-/1 Points] DETAILS MY NOTES SESSCALCET2 6.4.014. Use the Table of Integrals to evaluate the integral. (Use C for the constant of integration.) 5 sinб12x dx Need Help? Read Itarrow_forwardPlease refer belowarrow_forwardy"-9y+20y= 80t-156 y(0) = −6, y'(0) = 5 y(t) =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning

Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning


Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY