Finding the Interval of Convergence In Exercises 15-38, find the interval of convergence of the power series. (Be sure to include a check for convergence at the endpoints of the interval.)
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Calculus: Early Transcendental Functions (MindTap Course List)
- Calculus 2 Question:arrow_forwardReal Analysis I must determine if the two series below are divergent, conditionally convergent or absolutely convergent. Further I must prove this. In other words, if I use one of the tests, like the comparison test, I must fully explain why this applies. a) 1-(1/1!)+(1/2!)-(1/3!) + . . . b) (1/2) -(2/3) +(3/4) -(4/5) + . . . Thank you.arrow_forwardP12 Calc IIarrow_forward
- Calculus 2arrow_forwardCalculus IIarrow_forwardTutorial Exercise Find the interval of convergence of the power series. (Be sure to include a check for convergence at the endpoints of the interval.) W (4x) no (3m)! Step 1 Recall the Ratio Test, which states that if a, is a series with nonzero terms, and lim 1, or lim =o, then diverges For any fixed value of x such that x = 0, let a (4x)" (3n)1 and find lim 918 (4x)+1 lim (3(n + 1))! = lim (4x) (an) lim (4x)+1 518 (3(n-1))! (3n)! 88,0 4x × (-00,00) X Step 2 By the Ratio Test, the series converges if lim -21. Therefore, the series converges for x such that lim an Submit Skip (you cannot come back)arrow_forward
- Geometric series In Section 8.3, we established that the geo- metric series Ert converges provided |r| < 1. Notice that if -1arrow_forwardetermine whether the alternating series Σ (-1)+1 n=2 1 3(In n)² converges or diverges Choose the correct answer below and, if necessary, fill in the answer box to complete your choice. OA. The series does not satisfy the conditions of the Alternating Series Test but diverges because it is a p-series with p= OB. The series does not satisfy the conditions of the Alternating Series Test but converges because it is a p-series with p= OC. The series does not satisfy the conditions of the Alternating Series Test but diverges by the Root Test because the limit used does not exist. OD. The series does not satisfy the conditions of the Alternating Series Test but converges because it is a geometric series with r= OE. The series converges by the Alternating Series Testarrow_forwardCalculus IIarrow_forwardUSING ALTERNATING SERIES TEST PROVE THAT THIS CONVERGES.arrow_forwardCan you solve this?arrow_forwardStudy the power series: - Using Limit Comparison Test show that this series converges when x = −2. - Justify if the series is absolutely convergent, conditionally convergent, or divergent at x = 12? - Determine the radius and interval of convergence of the power series.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning