Concept explainers
Find the mass moment of inertia with respect to
Answer to Problem 9.137P
The mass moment of inertia with respect to
The mass moment of inertia with respect to
The mass moment of inertia with respect to
Explanation of Solution
Given information:
The thickness (t) of sheet steel is
The density
Calculation:
Divided the section into three geometric portions as shown below:
- Upper Flange
- Lower Flange
- Horizontal base
Find the mass of the upper flange component using the relation as shown below:
Here, V is volume of component of upper flange and A is the area of the section.
Find the area A of upper flange as shown below:
Here, b is the width of section and h is the height of section.
Substitute
Substitute
Find the mass of the lower flange component using the relation as shown below:
Here, V is volume of component of lower flange.
Find the area A of lower flange as shown below:
Here, b is the width of section and h is the height of section.
Substitute
Substitute
Find the moment of inertia about x axis of upper lower flange section as shown below:
Substitute
Find the moment of inertia about y axis of upper lower flange section as shown below:
Substitute
Find the moment of inertia about z axis of upper lower flange section as shown below:
Substitute
Find the mass of the horizontal base using the relation as shown below:
Find the area A of horizontal base as shown below:
Here, b is the width of section and h is the height of section.
Substitute
Substitute
Find the moment of inertia about x axis of horizontal base as shown in below:
Substitute
Find the moment of inertia about y axis of horizontal base as shown in below:
Substitute
Find the moment of inertia about z axis of horizontal base as shown in below:
Substitute
Find the total moment of inertia
Here,
Substitute
Thus, the mass moment of inertia with respect to
Find the total moment of inertia
Here,
Substitute
Thus, the mass moment of inertia with respect to
Find the total moment of inertia
Here,
Substitute
Thus, the mass moment of inertia with respect to
Want to see more full solutions like this?
Chapter 9 Solutions
VECTOR MECHANICS FOR ENGINEERS: STATICS
- (b) A steel 'hot rolled structural hollow section' column of length 5.75 m, has the cross-section shown in Figure Q.5(b) and supports a load of 750 kN. During service, it is subjected to axial compression loading where one end of the column is effectively restrained in position and direction (fixed) and the other is effectively held in position but not in direction (pinned). i) Given that the steel has a design strength of 275 MN/m², determine the load factor for the structural member based upon the BS5950 design approach using Datasheet Q.5(b). [11] ii) Determine the axial load that can be supported by the column using the Rankine-Gordon formula, given that the yield strength of the material is 280 MN/m² and the constant *a* is 1/30000. [6] 300 600 2-300 mm wide x 5 mm thick plates. Figure Q.5(b) L=5.75m Pinned Fixedarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forward
- Q2: For the following figure, find the reactions of the system. The specific weight of the plate is 500 lb/ft³arrow_forwardQ1: For the following force system, find the moments with respect to axes x, y, and zarrow_forwardQ10) Body A weighs 600 lb contact with smooth surfaces at D and E. Determine the tension in the cord and the forces acting on C on member BD, also calculate the reaction at B and F. Cable 6' 3' wwwarrow_forward
- Help ارجو مساعدتي في حل هذا السؤالarrow_forwardQ3: Find the resultant of the force system.arrow_forwardQuestion 1 A three-blade propeller of a diameter of 2 m has an activity factor AF of 200 and its ratio of static thrust coefficient to static torque coefficient is 10. The propeller's integrated lift coefficient is 0.3.arrow_forward
- (L=6847 mm, q = 5331 N/mm, M = 1408549 N.mm, and El = 8.6 x 1014 N. mm²) X A ΕΙ B L Y Marrow_forwardCalculate the maximum shear stress Tmax at the selected element within the wall (Fig. Q3) if T = 26.7 KN.m, P = 23.6 MPa, t = 2.2 mm, R = 2 m. The following choices are provided in units of MPa and rounded to three decimal places. Select one: ○ 1.2681.818 O 2. 25745.455 O 3. 17163.636 O 4. 10727.273 ○ 5.5363.636arrow_forwardIf L-719.01 mm, = 7839.63 N/m³, the normal stress σ caused by self-weight at the location of the maximum normal stress in the bar can be calculated as (Please select the correct value of σ given in Pa and rounded to three decimal places.) Select one: ○ 1. 1409.193 2. 845.516 O 3. 11273.545 ○ 4.8455.159 ○ 5.4509.418 6. 2818.386 7.5636.772arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY