Elementary Differential Equations
10th Edition
ISBN: 9780470458327
Author: William E. Boyce, Richard C. DiPrima
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 9.5, Problem 2P
(a)
To determine
To draw: The direction field and describe it’s behavior.
(b)
To determine
The critical point.
(c)
To determine
The corresponding linear system, eigen value and eigen
(d)
To determine
To sketch: The trajectories in the neighborhood of each critical point.
(e)
To determine
To draw: A phase portrait of given differential system.
(f)
To determine
The limiting behavior of x and y as
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
what is 4m-1? m=3
Calculs Insights
πT
| cos x |³ dx
59
2
2. Consider the ODE
u' = ƒ (u) = u² + r
where r is a parameter that can take the values r = −1, −0.5, -0.1, 0.1. For each value of r:
(a) Sketch ƒ(u) = u² + r and determine the equilibrium points.
(b) Draw the phase line.
(d) Determine the stability of the equilibrium points.
(d) Plot the direction field and some sample solutions,i.e., u(t)
(e) Describe how location of the equilibrium points and their stability change as you increase the
parameter r.
(f) Using the matlab program phaseline.m generate a solution for each value of r and the initial
condition u(0) = 0.9. Print and turn in your result for r = −1. Do not forget to add a figure caption.
(g) In the matlab program phaseline.m set the initial condition to u(0) = 1.1 and simulate the ode
over the time interval t = [0, 10] for different values of r. What happens? Why? You do not need to
turn in a plot for (g), just describe what happens.
Chapter 9 Solutions
Elementary Differential Equations
Ch. 9.1 - Prob. 1PCh. 9.1 - Prob. 2PCh. 9.1 - Prob. 3PCh. 9.1 - Prob. 4PCh. 9.1 - Prob. 5PCh. 9.1 - Prob. 6PCh. 9.1 - Prob. 7PCh. 9.1 - Prob. 8PCh. 9.1 - Prob. 9PCh. 9.1 - Prob. 10P
Ch. 9.1 - Prob. 11PCh. 9.1 - Prob. 12PCh. 9.1 - Prob. 13PCh. 9.1 - Prob. 14PCh. 9.1 - Prob. 15PCh. 9.1 - Prob. 16PCh. 9.1 - Prob. 17PCh. 9.1 - Prob. 18PCh. 9.1 - Prob. 19PCh. 9.1 - Prob. 20PCh. 9.1 - Prob. 21PCh. 9.1 - Prob. 22PCh. 9.2 - Prob. 1PCh. 9.2 - Prob. 2PCh. 9.2 - Prob. 3PCh. 9.2 - Prob. 4PCh. 9.2 - Prob. 5PCh. 9.2 - Prob. 6PCh. 9.2 - Prob. 7PCh. 9.2 - Prob. 8PCh. 9.2 - Prob. 9PCh. 9.2 - Prob. 10PCh. 9.2 - Prob. 11PCh. 9.2 - Prob. 12PCh. 9.2 - Prob. 13PCh. 9.2 - Prob. 14PCh. 9.2 - Prob. 15PCh. 9.2 - Prob. 16PCh. 9.2 - Prob. 17PCh. 9.2 - Prob. 18PCh. 9.2 - Prob. 19PCh. 9.2 - Prob. 20PCh. 9.2 - Prob. 21PCh. 9.2 - Prob. 22PCh. 9.2 - Prob. 23PCh. 9.2 - Prob. 24PCh. 9.2 - Prob. 25PCh. 9.2 - Prob. 26PCh. 9.2 - Prob. 27PCh. 9.2 - Prob. 28PCh. 9.3 - Prob. 1PCh. 9.3 - Prob. 2PCh. 9.3 - Prob. 3PCh. 9.3 - Prob. 4PCh. 9.3 - Prob. 5PCh. 9.3 - Prob. 6PCh. 9.3 - Prob. 7PCh. 9.3 - Prob. 8PCh. 9.3 - Prob. 9PCh. 9.3 - Prob. 10PCh. 9.3 - Prob. 11PCh. 9.3 - Prob. 12PCh. 9.3 - Prob. 13PCh. 9.3 - Prob. 14PCh. 9.3 - Prob. 15PCh. 9.3 - Prob. 16PCh. 9.3 - Prob. 17PCh. 9.3 - Prob. 18PCh. 9.3 - Prob. 19PCh. 9.3 - Prob. 22PCh. 9.3 - Prob. 26PCh. 9.3 - Prob. 27PCh. 9.3 - Prob. 28PCh. 9.3 - A generalization of the damped pendulum equation...Ch. 9.4 - Prob. 1PCh. 9.4 - Prob. 2PCh. 9.4 - Prob. 3PCh. 9.4 - Prob. 4PCh. 9.4 - Prob. 5PCh. 9.4 - Prob. 6PCh. 9.4 - Prob. 7PCh. 9.4 - Prob. 8PCh. 9.4 - Prob. 9PCh. 9.4 - Prob. 10PCh. 9.4 - Prob. 13PCh. 9.4 - Prob. 14PCh. 9.4 - Prob. 15PCh. 9.4 - Prob. 16PCh. 9.5 - Each of Problems 1 through 5 can be interpreted as...Ch. 9.5 - Each of Problems 1 through 5 can be interpreted as...Ch. 9.5 - Prob. 3PCh. 9.5 - Each of Problems 1 through 5 can be interpreted as...Ch. 9.5 - Prob. 5PCh. 9.5 - Prob. 6PCh. 9.5 -
Find the ratio of the amplitudes of the...Ch. 9.5 - Prob. 8PCh. 9.5 - Prob. 9PCh. 9.5 - Prob. 10PCh. 9.5 - Prob. 13PCh. 9.5 - Prob. 15PCh. 9.6 - In each of Problems 1 through 4, construct a...Ch. 9.6 - In each of Problems 1 through 4, construct a...Ch. 9.6 - Prob. 3PCh. 9.6 - Prob. 4PCh. 9.6 - Prob. 5PCh. 9.6 - Prob. 6PCh. 9.6 - By introducing suitable dimensionless variables,...Ch. 9.6 - Prob. 8PCh. 9.6 - Prob. 9PCh. 9.6 - Prob. 10PCh. 9.6 - Prob. 11PCh. 9.6 - Prob. 12PCh. 9.7 - Prob. 1PCh. 9.7 - In each of Problems 1 through 6, an autonomous...Ch. 9.7 - In each of Problems 1 through 6, an autonomous...Ch. 9.7 - Prob. 4PCh. 9.7 - Prob. 5PCh. 9.7 - Prob. 6PCh. 9.7 - Prob. 7PCh. 9.7 - Prob. 8PCh. 9.7 - Prob. 9PCh. 9.7 - Prob. 10PCh. 9.7 - Prob. 11PCh. 9.7 - Prob. 12PCh. 9.7 - Prob. 13PCh. 9.8 - Prob. 1PCh. 9.8 - Prob. 2PCh. 9.8 - Prob. 4PCh. 9.8 - Prob. 5P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Similar questions
- True or False and whyarrow_forward10 5 Obtain by multiplying matrices the composite coordinate transformation of two transformations, first x' = (x + y√√2+2)/2 y' = z' (x√√2-2√2)/2 z = (-x+y√√2-2)/2 followed by x" = (x'√√2+z'√√2)/2 y" = (-x'y'√√2+2')/2 z" = (x'y'√√2-2')/2.arrow_forwardNot use ai pleasearrow_forward
- 4 The plane 2x+3y+ 6z = 6 intersects the coordinate axes at P, Q, and R, forming a triangle. Draw a figure and identify the three points on it. Also find vectors PQ and PR. Write a vector formula for the area of the triangle PQR and find its value.arrow_forwardAND B A Ꭰarrow_forwardANBNC ND B こ Ꭰarrow_forward
- 8. In the following check to see if the set S is a vector subspace of the corresponding Rn. If it is not, explain why not. If it is, then find a basis and the dimension. X1 (a) S = X2 {[2], n ≤ n } c X1 X2 CR² X1 (b) S X2 = X3 X4 x1 + x2 x3 = 0arrow_forward5 Obtain by multiplying matrices the composite coordinate transformation of two transformations, first x' = (x + y√2+ z)/2 followed by y' = (x√√2-2√2)/2 z' = (-x+y√2-2)/2 x" = y" 2" = (x'√√2+2'√√2)/2 (-x'y'√√2+)/2 (x'y' √√2-z)/2.arrow_forwardWhat is the answer in 10.3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Advanced Engineering MathematicsAdvanced MathISBN:9780470458365Author:Erwin KreyszigPublisher:Wiley, John & Sons, IncorporatedNumerical Methods for EngineersAdvanced MathISBN:9780073397924Author:Steven C. Chapra Dr., Raymond P. CanalePublisher:McGraw-Hill EducationIntroductory Mathematics for Engineering Applicat...Advanced MathISBN:9781118141809Author:Nathan KlingbeilPublisher:WILEY
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Lecture 46: Eigenvalues & Eigenvectors; Author: IIT Kharagpur July 2018;https://www.youtube.com/watch?v=h5urBuE4Xhg;License: Standard YouTube License, CC-BY
What is an Eigenvector?; Author: LeiosOS;https://www.youtube.com/watch?v=ue3yoeZvt8E;License: Standard YouTube License, CC-BY