To explain: The claim implies that the harmonic series must diverge and graph the sequence of partial.
The obtained terms is 0, 1, 2, 3, 4, 5, and 60.
Given Information:
The sequence is defined as,
Explanation:
Consider the given information,
First make the table of the partial sums of the given sequence.
Partial sum | |
1 | 1 |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 |
Now, draw the graph of
It can be seen that all points appear to lie above the function
Since the function
Hence, the function
Chapter 9 Solutions
PRECALCULUS:GRAPHICAL,...-NASTA ED.
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning