Mathematical Statistics with Applications
Mathematical Statistics with Applications
7th Edition
ISBN: 9780495110811
Author: Dennis Wackerly, William Mendenhall, Richard L. Scheaffer
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 9.4, Problem 38E

Let Y1, Y2, … , Yn denote a random sample from a normal distribution with mean μ and variance σ2.

a If μ is unknown and σ2 is known, show that Y ¯ is sufficient for μ.

b If μ is known and σ2 is unknown, show that i = 1 n ( Y i μ ) 2 is sufficient for σ2.

c If μ and σ2 are both unknown, show that i = 1 n Y i and i = 1 n Y i 2 are jointly sufficient for μ and σ2. [Thus, it follows that Y ¯ and i = 1 n ( Y i Y ¯ ) 2 or Y ¯ and S2 are also jointly sufficient for μ and σ2.]

a.

Expert Solution
Check Mark
To determine

Prove that if µ is unknown and σ2 is known, Y¯ is sufficient for µ.

Answer to Problem 38E

It is proved that if µ is unknown and σ2 is known, Y¯ is sufficient for µ.

Explanation of Solution

Let Y1,Y2,...,Yn denote a random sample from a normal distribution with the mean µ and variance σ2.

The likelihood function is given as follows:

L=1(2π)n2σnexp[12σ2i1n(yiμ)2]=(2π)n2σnexp[12σ2(i=1nyi22μny¯+nμ2)]=(2π)n2σnexp[12σ2i1n(yi2)]exp[12σ2(2μny¯nμ2)]=h(y)g(y¯,μ)

Where h(y)=(2π)n2σnexp[12σ2i1n(yi2)] and g(y¯,μ)=exp[12σ2(2μny¯nμ2)].

By Theorem 9.4 (Factorization theorem), it can be said that if µ is unknown and σ2 is known, Y¯ is sufficient for µ.

b.

Expert Solution
Check Mark
To determine

Prove that if µ is known and σ2 is unknown, i=1n(yiμ)2 is sufficient for σ2.

Answer to Problem 38E

It is proved that if µ is known and σ2 is unknown, i=1n(yiμ)2 is sufficient for σ2.

Explanation of Solution

The likelihood function is given as follows:

L=1(2πσ)nexp[12σ2i1n(yiμ)2]=h(y)g(i=1n(yiμ)2,σ2)

Where h(y)=1 and g(i=1n(yiμ)2,σ2)=1(2πσ)nexp[12σ2i1n(yiμ)2].

By Theorem 9.4 (Factorization theorem), it can be said that if µ is known and σ2 is unknown, i=1n(yiμ)2 is sufficient for σ2.

c.

Expert Solution
Check Mark
To determine

Prove that if both µ and σ2 are unknown, i=1n(Yi) and i=1n(Yi2) are jointly sufficient for µ and σ2.

Answer to Problem 38E

It is proved that if both µ and σ2 are unknown, i=1n(Yi) and i=1n(Yi2) are jointly sufficient for µ and σ2.

Explanation of Solution

The likelihood function is given as follows:

L=1(2πσ)nexp[12σ2i1n(yiμ)2]=1(2πσ)nexp[12σ2i1n(yi22μyi+μ2)]=h(y)g(i=1nyi,i=1nyi2,μ,σ2)

Where h(y)=1 and g(i=1nyi,i=1nyi2,μ,σ2)=1(2πσ)nexp[12σ2i1n(yi22μyi+μ2)].

By Theorem 9.4 (Factorization theorem), it can be said that if both µ and σ2 are unknown, i=1n(Yi) and i=1n(Yi2) are jointly sufficient for µ and σ2.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A hat contains slips of paper numbered 1 through 6. You draw two slips of paper at random from the hat,without replacing the first slip into the hat.(a) (5 points) Write out the sample space S for this experiment.(b) (5 points) Express the event E : {the sum of the numbers on the slips of paper is 4} as a subset of S.(c) (5 points) Find P(E)(d) (5 points) Let F = {the larger minus the smaller number is 0}. What is P(F )?(e) (5 points) Are E and F disjoint? Why or why not?(f) (5 points) Find P(E ∪ F )
In addition to the in-school milk supplement program, the nurse would like to increase the use of daily vitamin supplements for the children by visiting homes and educating about the merits of vitamins. She believes that currently, about 50% of families with school-age children give the children a daily megavitamin. She would like to increase this to 70%. She plans a two-group study, where one group serves as a control and the other group receives her visits. How many families should she expect to visit to have 80% power of detecting this difference? Assume that drop-out rate is 5%.
A recent survey of 400 americans asked whether or not parents do too much for their young adult children. The results of the survey are shown in the data file. a) Construct the frequency and relative frequency distributions. How many respondents felt that parents do too much for their adult children? What proportion of respondents felt that parents do too little for their adult children? b) Construct a pie chart. Summarize the findings

Chapter 9 Solutions

Mathematical Statistics with Applications

Ch. 9.3 - Applet Exercise Refer to Exercises 9.9 and 9.10....Ch. 9.3 - Applet Exercise Refer to Exercise 9.11. What...Ch. 9.3 - Applet Exercise Refer to Exercises 9.99.12. Access...Ch. 9.3 - Applet Exercise Refer to Exercise 9.13. Scroll...Ch. 9.3 - Refer to Exercise 9.3. Show that both 1 and 2 are...Ch. 9.3 - Refer to Exercise 9.5. Is 22 a consistent...Ch. 9.3 - Suppose that X1, X2,, Xn and Y1, Y2,,Yn are...Ch. 9.3 - In Exercise 9.17, suppose that the populations are...Ch. 9.3 - Let Y1, Y2,,Yn denote a random sample from the...Ch. 9.3 - If Y has a binomial distribution with n trials and...Ch. 9.3 - Let Y1, Y2,, Yn be a random sample of size n from...Ch. 9.3 - Refer to Exercise 9.21. Suppose that Y1, Y2,, Yn...Ch. 9.3 - Refer to Exercise 9.21. Suppose that Y1, Y2,, Yn...Ch. 9.3 - Let Y1, Y2, Y3, Yn be independent standard normal...Ch. 9.3 - Suppose that Y1, Y2, , Yn denote a random sample...Ch. 9.3 - Prob. 26ECh. 9.3 - Use the method described in Exercise 9.26 to show...Ch. 9.3 - Let Y1, Y2, , Yn denote a random sample of size n...Ch. 9.3 - Let Y1, Y2, , Yn denote a random sample of size n...Ch. 9.3 - Let Y1, Y2, , Yn be independent random variables,...Ch. 9.3 - Prob. 31ECh. 9.3 - Let Y1, Y2, , Yn denote a random sample from the...Ch. 9.3 - An experimenter wishes to compare the numbers of...Ch. 9.3 - Prob. 34ECh. 9.3 - Let Y1, Y2, be a sequence of random variables with...Ch. 9.3 - Suppose that Y has a binomial distribution based...Ch. 9.4 - Prob. 37ECh. 9.4 - Let Y1, Y2, , Yn denote a random sample from a...Ch. 9.4 - Let Y1, Y2, , Yn denote a random sample from a...Ch. 9.4 - Prob. 40ECh. 9.4 - Let Y1, Y2, , Yn denote a random sample from a...Ch. 9.4 - If Y1, Y2, , Yn denote a random sample from a...Ch. 9.4 - Prob. 43ECh. 9.4 - Let Y1, Y2, , Yn denote independent and...Ch. 9.4 - Suppose that Y1, Y2, , Yn is a random sample from...Ch. 9.4 - If Y1, Y2,, Yn denote a random sample from an...Ch. 9.4 - Refer to Exercise 9.43. If is known, show that...Ch. 9.4 - Refer to Exercise 9.44. If is known, show that...Ch. 9.4 - Let Y1, Y2, . . . , Yn denote a random sample from...Ch. 9.4 - Let Y1, Y2, . . . , Yn denote a random sample from...Ch. 9.4 - Prob. 51ECh. 9.4 - Prob. 52ECh. 9.4 - Prob. 53ECh. 9.4 - Prob. 54ECh. 9.4 - Let Y1, Y2, . . . , Yn denote independent and...Ch. 9.5 - Refer to Exercise 9.38(b). Find an MVUE of 2. 9.38...Ch. 9.5 - Refer to Exercise 9.18. Is the estimator of 2...Ch. 9.5 - Refer to Exercise 9.40. Use i=1nYi2 to find an...Ch. 9.5 - The number of breakdowns Y per day for a certain...Ch. 9.5 - Prob. 60ECh. 9.5 - Refer to Exercise 9.49. Use Y(n) to find an MVUE...Ch. 9.5 - Refer to Exercise 9.51. Find a function of Y(1)...Ch. 9.5 - Prob. 63ECh. 9.5 - Let Y1, Y2, , Yn be a random sample from a normal...Ch. 9.5 - In this exercise, we illustrate the direct use of...Ch. 9.5 - The likelihood function L(y1,y2,,yn|) takes on...Ch. 9.5 - Refer to Exercise 9.66. Suppose that a sample of...Ch. 9.5 - Prob. 68ECh. 9.6 - Prob. 69ECh. 9.6 - Suppose that Y1, Y2, , Yn constitute a random...Ch. 9.6 - If Y1, Y2, , Yn denote a random sample from the...Ch. 9.6 - If Y1, Y2, , Yn denote a random sample from the...Ch. 9.6 - An urn contains black balls and N white balls....Ch. 9.6 - Let Y1, Y2,, Yn constitute a random sample from...Ch. 9.6 - Prob. 75ECh. 9.6 - Let X1, X2, X3, be independent Bernoulli random...Ch. 9.6 - Let Y1, Y2,, Yn denote independent and identically...Ch. 9.6 - Let Y1, Y2,, Yn denote independent and identically...Ch. 9.6 - Let Y1, Y2,, Yn denote independent and identically...Ch. 9.7 - Suppose that Y1, Y2,, Yn denote a random sample...Ch. 9.7 - Suppose that Y1, Y2, , Yn denote a random sample...Ch. 9.7 - Prob. 82ECh. 9.7 - Suppose that Y1, Y2, , Yn constitute a random...Ch. 9.7 - Prob. 84ECh. 9.7 - Let Y1, Y2,, Yn denote a random sample from the...Ch. 9.7 - Suppose that X1, X2, , Xm, representing yields per...Ch. 9.7 - A random sample of 100 voters selected from a...Ch. 9.7 - Prob. 88ECh. 9.7 - It is known that the probability p of tossing...Ch. 9.7 - A random sample of 100 men produced a total of 25...Ch. 9.7 - Find the MLE of based on a random sample of size...Ch. 9.7 - Prob. 92ECh. 9.7 - Prob. 93ECh. 9.7 - Suppose that is the MLE for a parameter . Let t()...Ch. 9.7 - A random sample of n items is selected from the...Ch. 9.7 - Consider a random sample of size n from a normal...Ch. 9.7 - The geometric probability mass function is given...Ch. 9.8 - Refer to Exercise 9.97. What is the approximate...Ch. 9.8 - Consider the distribution discussed in Example...Ch. 9.8 - Suppose that Y1, Y2, . . . , Yn constitute a...Ch. 9.8 - Let Y1, Y2, . . . , Yn denote a random sample of...Ch. 9.8 - Refer to Exercises 9.97 and 9.98. If a sample of...Ch. 9 - Prob. 103SECh. 9 - Prob. 104SECh. 9 - Refer to Exercise 9.38(b). Under the conditions...Ch. 9 - Prob. 106SECh. 9 - Suppose that a random sample of length-of-life...Ch. 9 - The MLE obtained in Exercise 9.107 is a function...Ch. 9 - Prob. 109SECh. 9 - Refer to Exercise 9.109. a Find the MLE N2 of N. b...Ch. 9 - Refer to Exercise 9.110. Suppose that enemy tanks...Ch. 9 - Let Y1, Y2, . . . , Yn denote a random sample from...
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Mod-01 Lec-01 Discrete probability distributions (Part 1); Author: nptelhrd;https://www.youtube.com/watch?v=6x1pL9Yov1k;License: Standard YouTube License, CC-BY
Discrete Probability Distributions; Author: Learn Something;https://www.youtube.com/watch?v=m9U4UelWLFs;License: Standard YouTube License, CC-BY
Probability Distribution Functions (PMF, PDF, CDF); Author: zedstatistics;https://www.youtube.com/watch?v=YXLVjCKVP7U;License: Standard YouTube License, CC-BY
Discrete Distributions: Binomial, Poisson and Hypergeometric | Statistics for Data Science; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=lHhyy4JMigg;License: Standard Youtube License