Nonlinear Dynamics and Chaos
Nonlinear Dynamics and Chaos
2nd Edition
ISBN: 9780813349107
Author: Steven H. Strogatz
Publisher: PERSEUS D
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 9.4, Problem 2E
Interpretation Introduction

Interpretation:

  • a) To state why it is called as the “tent map”.

  • b) To find all fixed points and classify their stability.

  • c) To show map has period -2 orbit and classify the stability of the orbit.

  • d) To find period -3 and period -4 points and classify their stability.

Concept Introduction:

  • ➢ Lorenz equations

    x˙=σ(yx)y˙=rxyxzz˙=xybzHere σ, r, b > 0

    The solution of Lorenz equations oscillates irregularly for a wide range of parameters, never exactly repeating but always remains in a bounded region of phase space.

  • ➢ Strange attractor: It is not same as a fixed point, limit cycle, a point, a curve or surface. It is a fractal with fractional dimension between 2 and 3.

  • ➢ Chaos: It is aperiodic long-term behavior in a deterministic system that exhibits sensitive dependence on initial conditions.

  • ➢ The plot of function zn+1=f(zn) is called a Lorenz map. It gives information about dynamics on the attractor.

  • ➢ If |f(z)|>1 then the limit cycle exists and it is unstable.

Blurred answer
Students have asked these similar questions
Prove that a relation X defined on a set A that is reflexive, symmetric and antisymmetric is an equivalence relation and determine the equivalence classes.
Let X be the relation defined on the power set of the set integers P(Z) by AXB whenever A U B is a finite set of integers. Prove whether or not X is reflexive, symmetric, antisymmetirc or transitive
Page < 1 of 2 - ZOOM + 1) Answer the following questions by circling TRUE or FALSE (No explanation or work required). −1 0 01 i) If A = 0 0 2 0, then its eigenvalues are ₁ = 1,λ₂ = 2, and 13 0 0 = : 0. (TRUE FALSE) ii) A linear transformation is operation preserving because the same result occurs whether you perform the operations of addition and scalar multiplication before or after applying the linear transformation. ( TRUE FALSE) iii) A linear transformation that is one-to-one and onto is called an isomorphism. (TRUE FALSE) iv) If the standard matrix A for the linear transformation T: R³ → R³ is -1 0 01 A = 2 00, then T is invertible. (TRUE FALSE) 0 1 1. v) Let A, B, and C be square matrices of order n. If A is similar to B and B is similar to C, then A is similar to C. ( TRUE FALSE) 2) a) i) Find the matrix that produces the counterclockwise rotation of 30° about the z-axis. ii) Find the image of the vector (1,1,1) for the rotation described in i). b) Give a geometric description…
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY