Nonlinear Dynamics and Chaos
Nonlinear Dynamics and Chaos
2nd Edition
ISBN: 9780813349107
Author: Steven H. Strogatz
Publisher: PERSEUS D
bartleby

Videos

Question
Book Icon
Chapter 9.4, Problem 1E
Interpretation Introduction

Interpretation:

To compute Lorenz map for r=28,σ=10,b=8/3 using numerical integration.

Concept Introduction:

  • ➢ Lorenz equations

    x˙=σ(yx)y˙=rxyxzz˙=xybzHere σ, r, b > 0

    The solution of Lorenz equations oscillates irregularly for a wide range of parameters, never exactly repeating, but it always remains in a bounded region of phase space.

  • ➢ Strange attractor: It is not the same as a fixed point, limit cycle, a point, a curve or surface. It is a fractal having fractional dimensions between 2 and 3.

  • ➢ Chaos: It is the study of deterministic differential equations that display sensitive dependence on initial conditions.

Blurred answer
Students have asked these similar questions
Between the function 3 (4)=x-x-1 Solve inside the interval [1,2]. then find the approximate Solution the root within using the bisection of the error = 10² method.
E10) Perform four iterations of the Jacobi method for solving the following system of equations. 2 -1 -0 -0 XI 2 0 0 -1 2 X3 0 0 2 X4 With x(0) (0.5, 0.5, 0.5, 0.5). Here x = (1, 1, 1, 1)". How good x (5) as an approximation to x?
by (2) Gauss saidel - - method find (2) و X2 for the sestem X1 + 2x2=-4 2x1 + 2x2 = 1 Such thef (0) x2=-2
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Introduction to Triple Integrals; Author: Mathispower4u;https://www.youtube.com/watch?v=CPR0ZD0IYVE;License: Standard YouTube License, CC-BY