In Problems 9-12, write the given system as a set of scalar equations.
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Fundamentals of Differential Equations and Boundary Value Problems
- a C d 2 1 -1 0 1 2 3 -1 Graph of f'(x) (5) The graph of f'(x), the derivative of f(x), is shown in the figure above. The line tangent to the graph of f'(x) at x=0 is vertical and f'(x) is not differentiable at x = 1. Which of the following statements is true? (a) f'(x) does not exist at x = 0. (b) f(x) has a point of inflection at x = 1. (c) f(x) has a local maximum at x = 0. (d) f(x) has a local maximum at x = 1.arrow_forwardball is drawn from one of three urns depending on the outcomeof a roll of a dice. If the dice shows a 1, a ball is drawn from Urn I, whichcontains 2 black balls and 3 white balls. If the dice shows a 2 or 3, a ballis drawn from Urn II, which contains 1 black ball and 3 white balls. Ifthe dice shows a 4, 5, or 6, a ball is drawn from Urn III, which contains1 black ball and 2 white balls. (i) What is the probability to draw a black ball? [7 Marks]Hint. Use the partition rule.(ii) Assume that a black ball is drawn. What is the probabilitythat it came from Urn I? [4 Marks]Total marks 11 Hint. Use Bayes’ rulearrow_forwardLet X be a random variable taking values in (0,∞) with proba-bility density functionfX(u) = 5e^−5u, u > 0.Let Y = X2 Total marks 8 . Find the probability density function of Y .arrow_forward
- Let P be the standard normal distribution, i.e., P is the proba-bility measure on R, B(R) given bydP(x) = 1√2πe− x2/2dx.Consider the random variablesfn(x) = (1 + x2) 1/ne^(x^2/n+2) x ∈ R, n ∈ N.Using the dominated convergence theorem, prove that the limitlimn→∞E(fn)exists and find itarrow_forwardOR 16 f(x) = Ef 16 χ по x²-2 410 | y = (x+2) + 4 Y-INT: y = 0 X-INT: X=0 VA: x=2 OA: y=x+2 0 X-INT: X=-2 X-INT: y = 2 VA 0 2 whole. 2-2 4 y - (x+2) = 27-270 + xxx> 2 क् above OA (x+2) OA x-2/x²+0x+0 2 x-2x 2x+O 2x-4 4 X<-1000 4/4/2<0 below Of y VA X=2 X-2 OA y=x+2 -2 2 (0,0) 2 χarrow_forwardpls help asaparrow_forward
- Question 2 (3.5 points) A firm produces a certain good. The current unit price of the good is equal to €7. At this price level, the marginal demand is equal to -0.8 and the point elasticity of demand is equal to -0.28. a. Give a precise economic interpretation of the number -0.8. b. Find the exact value of the current revenue of the firm and estimate the change in revenue if the current unit price is reduced by 3%. Next, assume that the demand is given by an equation of the form q = a/(bp). c. Find the values of the parameters a and b. Answer to Question 2:arrow_forwardpls help asaparrow_forward5) Let P(T) = a;T be a complex polynomial of degree n ≥ 1. Show that |P(z)| — ∞ for |z| i=0 8∞. tarrow_forward
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning