Fundamentals of Engineering Thermodynamics
8th Edition
ISBN: 9781118412930
Author: Michael J. Moran, Howard N. Shapiro, Daisie D. Boettner, Margaret B. Bailey
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 9.14, Problem 81P
(a)
To determine
The thermal efficiency of the cycle.
(b)
To determine
The back work ratio for the cycle.
(c)
To determine
The net power developed in the cycle.
(d)
To determine
The rate of the exergy destruction for the compressor.
The rate of the exergy destruction for the turbine.
The rate of the exergy destruction for the regenerator.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Solve this problem and show all of the work
Solve this problem and show all of the work
Solve this problem and show all of the work
Chapter 9 Solutions
Fundamentals of Engineering Thermodynamics
Ch. 9.14 - Prob. 1ECh. 9.14 - Prob. 2ECh. 9.14 - Prob. 3ECh. 9.14 - Prob. 4ECh. 9.14 - Prob. 5ECh. 9.14 - 6. What is the purpose of a rear diffuser on a...Ch. 9.14 - 7. What is the meaning of the octane rating that...Ch. 9.14 - Prob. 8ECh. 9.14 - Prob. 9ECh. 9.14 - 10. What is the purpose of the gas turbine–powered...
Ch. 9.14 - Prob. 11ECh. 9.14 - Prob. 12ECh. 9.14 - Prob. 13ECh. 9.14 - Prob. 14ECh. 9.14 - Prob. 15ECh. 9.14 - Prob. 16ECh. 9.14 - Prob. 17ECh. 9.14 - 1. The thermal efficiency expression given by Eq....Ch. 9.14 - Prob. 2CUCh. 9.14 - Prob. 3CUCh. 9.14 - 4. For a specified compression ratio, and assuming...Ch. 9.14 - Prob. 5CUCh. 9.14 - Prob. 6CUCh. 9.14 - 7. The value of the back work ratio of a Brayton...Ch. 9.14 - Prob. 8CUCh. 9.14 - Prob. 9CUCh. 9.14 - Prob. 10CUCh. 9.14 - Prob. 11CUCh. 9.14 - Prob. 12CUCh. 9.14 - Prob. 13CUCh. 9.14 - 14. Referring to Example 9.4, on the basis of a...Ch. 9.14 - Prob. 15CUCh. 9.14 - Prob. 16CUCh. 9.14 - Prob. 17CUCh. 9.14 - Prob. 18CUCh. 9.14 - 19. Sketch a Carnot gas power cycle on the p–υ and...Ch. 9.14 - Prob. 20CUCh. 9.14 - Prob. 21CUCh. 9.14 - Prob. 22CUCh. 9.14 - Prob. 23CUCh. 9.14 - Prob. 24CUCh. 9.14 - Prob. 25CUCh. 9.14 - Prob. 26CUCh. 9.14 - Prob. 27CUCh. 9.14 - Prob. 28CUCh. 9.14 - Prob. 29CUCh. 9.14 - Prob. 30CUCh. 9.14 - Prob. 31CUCh. 9.14 - Prob. 32CUCh. 9.14 - Prob. 33CUCh. 9.14 - Prob. 34CUCh. 9.14 - Prob. 35CUCh. 9.14 - Prob. 36CUCh. 9.14 - Prob. 37CUCh. 9.14 - Prob. 38CUCh. 9.14 - Prob. 39CUCh. 9.14 - Prob. 40CUCh. 9.14 - Prob. 41CUCh. 9.14 - Prob. 42CUCh. 9.14 - Prob. 43CUCh. 9.14 - Prob. 44CUCh. 9.14 - Prob. 45CUCh. 9.14 - Prob. 46CUCh. 9.14 - Prob. 47CUCh. 9.14 - Prob. 48CUCh. 9.14 - Prob. 49CUCh. 9.14 - Prob. 50CUCh. 9.14 - Prob. 1PCh. 9.14 - Prob. 3PCh. 9.14 - Prob. 5PCh. 9.14 - Prob. 6PCh. 9.14 - Prob. 7PCh. 9.14 - Prob. 8PCh. 9.14 - Prob. 10PCh. 9.14 - Prob. 11PCh. 9.14 - Prob. 12PCh. 9.14 - Prob. 13PCh. 9.14 - Prob. 14PCh. 9.14 - Prob. 15PCh. 9.14 - Prob. 16PCh. 9.14 - Prob. 17PCh. 9.14 - Prob. 18PCh. 9.14 - 9.19 Referring again to Fig. P9.18, let p1 = 1...Ch. 9.14 - Prob. 20PCh. 9.14 - Prob. 21PCh. 9.14 - Prob. 22PCh. 9.14 - Prob. 23PCh. 9.14 - Prob. 24PCh. 9.14 - Prob. 25PCh. 9.14 - Prob. 26PCh. 9.14 - Prob. 27PCh. 9.14 - Prob. 28PCh. 9.14 - Prob. 29PCh. 9.14 - Prob. 30PCh. 9.14 - Prob. 34PCh. 9.14 - Prob. 35PCh. 9.14 - Prob. 36PCh. 9.14 - Prob. 41PCh. 9.14 - 9.42 An ideal air-standard Brayton cycle operating...Ch. 9.14 - Prob. 45PCh. 9.14 - 9.46 Air enters the compressor of an ideal cold...Ch. 9.14 - Prob. 48PCh. 9.14 - Prob. 49PCh. 9.14 - 9.50 Air enters the compressor of an ideal...Ch. 9.14 - 9.53 The cycle of Problem 9.42 is modified to...Ch. 9.14 - 9.54 Air enters the compressor of an air-standard...Ch. 9.14 - 9.55 Air enters the compressor of a simple gas...Ch. 9.14 - Prob. 56PCh. 9.14 - 9.57 Air enters the compressor of a simple gas...Ch. 9.14 - 9.58 Air enters the compressor of a simple gas...Ch. 9.14 - 9.59 An ideal air-standard regenerative Brayton...Ch. 9.14 - Prob. 60PCh. 9.14 - Prob. 61PCh. 9.14 - 9.62 Air enters the compressor of a cold...Ch. 9.14 - Prob. 65PCh. 9.14 - Prob. 66PCh. 9.14 - Prob. 67PCh. 9.14 - 9.68 Fig. P9.68 illustrates a gas turbine power...Ch. 9.14 - Prob. 69PCh. 9.14 - 9.70 Air enters the turbine of a gas turbine at...Ch. 9.14 - Prob. 72PCh. 9.14 - Prob. 73PCh. 9.14 - 9.74 Air enters the compressor of a cold...Ch. 9.14 - 9.75 Air enters a two-stage compressor operating...Ch. 9.14 - 9.76 Air enters a two-stage compressor operating...Ch. 9.14 - 9.78 Air enters a compressor operating at steady...Ch. 9.14 - 9.79 Air enters the first compressor stage of a...Ch. 9.14 - 9.80 An air-standard regenerative Brayton cycle...Ch. 9.14 - 9.81 Air enters the compressor of a cold...Ch. 9.14 - 9.82 An air-standard Brayton cycle produces 10 MW...Ch. 9.14 - Prob. 83PCh. 9.14 - 9.84 Combining the features considered in Problem...Ch. 9.14 - 9.85 Air at 26 kPa, 230 K, and 220 m/s enters a...Ch. 9.14 - 9.87 Air enters the diffuser of a turbojet engine...Ch. 9.14 - Prob. 88PCh. 9.14 - Prob. 89PCh. 9.14 - Prob. 90PCh. 9.14 - Prob. 91PCh. 9.14 - Prob. 92PCh. 9.14 - Prob. 93PCh. 9.14 - Prob. 94PCh. 9.14 - Prob. 95PCh. 9.14 - Prob. 96PCh. 9.14 - Prob. 97PCh. 9.14 - Prob. 98PCh. 9.14 - Prob. 99PCh. 9.14 - Prob. 101PCh. 9.14 - Prob. 102PCh. 9.14 - Prob. 103PCh. 9.14 - Prob. 104PCh. 9.14 - Prob. 105PCh. 9.14 - Prob. 106PCh. 9.14 - Prob. 107PCh. 9.14 - Prob. 108PCh. 9.14 - Prob. 109PCh. 9.14 - Prob. 110PCh. 9.14 - Prob. 111PCh. 9.14 - Prob. 112PCh. 9.14 - Prob. 113PCh. 9.14 - Prob. 114PCh. 9.14 - Prob. 115PCh. 9.14 - Prob. 117PCh. 9.14 - Prob. 118PCh. 9.14 - Prob. 120PCh. 9.14 - Prob. 121PCh. 9.14 - Prob. 122PCh. 9.14 - Prob. 123PCh. 9.14 - Prob. 124PCh. 9.14 - Prob. 125PCh. 9.14 - Prob. 126PCh. 9.14 - Prob. 127PCh. 9.14 - Prob. 129PCh. 9.14 - 9.130 Steam expands isentropically through a...Ch. 9.14 - Prob. 131PCh. 9.14 - Prob. 132PCh. 9.14 - Prob. 133PCh. 9.14 - 9.134 A converging–diverging nozzle operates at...Ch. 9.14 - Prob. 135PCh. 9.14 - Prob. 137PCh. 9.14 - Prob. 138PCh. 9.14 - Prob. 139PCh. 9.14 - 9.140 Air as an ideal gas with k = 1.4 enters a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Solve this problem and show all of the workarrow_forwardSolve this problem and show all of the workarrow_forwardPart A The man pulls on the rope with a force of F = 30 N as shown in (Figure 1). Figure 1.5 m 3 m. 4m 10.5 m 1 of 1 Determine the position vector from O to A. Express the x, y, and z components of the position vector in meters to three significant figures separated by commas. ΜΕ ΑΣΦ vec (TOA). (TOA)y. (TOA)== Submit Request Answer Part B m Determine the position vector from O to B. Express the x, y, and z components of the position vector in meters to three significant figures separated by commas. ΜΕ ΑΣΦ ↓↑ vec (TOB)x, (TOB)y, (TOB) = Submit Request Answer Part C Complete previous part(s) Provide Feedback ? marrow_forward
- 4 Part A The tool is used to shut off gas valves that are difficult to access (Figure 1). Figure 0.25 m 30 0,4 m < 1 of 1 If the force F= {-60i+40j+15k} N is applied to the handle, determine the component of the moment created about the z axis of the valve. Express your answer with the appropriate units. Mz = Value Submit Request Answer Provide Feedback | ? Unitsarrow_forward3. A steam power plant has an average monthly net power delivery of 740 MW over the course of a year. This power delivery is accomplished by burning coal in the boiler. The coal has a heating value of 9150 Btu/lbm. The cost of the coal is $14.20/ton. The overall thermal efficiency of the plant is, nth Wnet Qboiler 0.26 = 26% Determine the annual cost of the coal required to deliver the given average monthly power.arrow_forwardThe cable exerts a force of P = 4 kN at the end of the 8-m-long crane boom. A P 8 m B -x- I'm En ▾ Part A If 0 = 30°, determine the placement x of the boom at B so that this force creates a maximum moment about point O. Express your answer to three significant figures and include the appropriate units. x = 9.81 m Submit Previous Answers ✓ Correct ▾ Part B What is this moment? Express your answer to three significant figures and include the appropriate units. Assume the positive direction is counterclockwise. (Mo) max 43.7 = E ? N Submit Previous Answers Request Answer X Incorrect; Try Again; 28 attempts remaining Enter your answer with a different unit type. Review a list of acceptable units.arrow_forward
- Find highest and lowest temperature.arrow_forwardExplained step by step.arrow_forwardThe bevel gear shown in is subjected to the force F which is caused from contact with another gear. Part A F (201+8j 15k) N 40 mm Determine the moment of this force about the y axis of the gear shaft. Express your answer with the appropriate units. My = Value Submit Request Answer ? Units 30 mmarrow_forward
- Consider the beam in. Part A 1.5 ft 200 lb 200lb 2 ft 30° 1.25 ft 30° If F 90 lb, determine the resultant couple moment. = Express your answer in pound-feet to three significant figures. Assume the positive direction is counterclockwise. ΑΣΦ vec MR = Submit Request Answer ? lb.ftarrow_forward4. An operating parameter often used by power plant engineers is the heat rate. The heat rate is defined as, HR Qbioler Wnet where Qbioler is the heat transfer rate (Btu/h) to the water in the boiler due to the combustion of a fuel and Wnet is the net power (kW) delivered by the plant. In comparison, the thermal efficiency of the power plant is defined as, nth Wnet Qbioler where the numerator and denominator have the same units. Consider a power plant that is delivering 1000 MW of power while utilizing a heat transfer rate of 3570 MW at the boiler. Determine the heat rate and thermal efficiency of this power plant.arrow_forwardThe shaft shown in the sketch is subjected to tensile torsional and bending loads Determine the principal stresses at the location of stress concentration ✓ D=45MR F=3MM 1000-M 1000N チ d=30mm 500N 150 мм MM- 120 MA-arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY