d the error in the “proof” of the following “theorem.”
“Theorem”:LetRbe a relation on a setAthat is symmetric and transitive. ThenRis reflexive.
Proof:Let
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Discrete Mathematics and Its Applications ( 8th International Edition ) ISBN:9781260091991
- Give an example of a relation R on a nonempty set A that is symmetric and transitive, but not reflexive.arrow_forwardLabel each of the following statements as either true or false. Let R be a relation on a nonempty set A that is symmetric and transitive. Since R is symmetric xRy implies yRx. Since R is transitive xRy and yRx implies xRx. Hence R is alsoreflexive and thus an equivalence relation on A.arrow_forwardTrue or False Label each of the following statements as either true or false. 2. Every relation on a nonempty set is as mapping.arrow_forward
- 13. Consider the set of all nonempty subsets of . Determine whether the given relation on is reflexive, symmetric or transitive. Justify your answers. a. if and only if is subset of . b. if and only if is a proper subset of . c. if and only if and have the same number of elements.arrow_forwardLabel each of the following statements as either true or false. Every mapping on a nonempty set A is a relation.arrow_forwardA relation R on a nonempty set A is called asymmetric if, for x and y in A, xRy implies yRx. Which of the relations in Exercise 2 areasymmetric? In each of the following parts, a relation R is defined on the set of all integers. Determine in each case whether or not R is reflexive, symmetric, or transitive. Justify your answers. a. xRy if and only if x=2y. b. xRy if and only if x=y. c. xRy if and only if y=xk for some k in . d. xRy if and only if xy. e. xRy if and only if xy. f. xRy if and only if x=|y|. g. xRy if and only if |x||y+1|. h. xRy if and only if xy i. xRy if and only if xy j. xRy if and only if |xy|=1. k. xRy if and only if |xy|1.arrow_forward
- In each of the following parts, a relation is defined on the set of all human beings. Determine whether the relation is reflective, symmetric, or transitive. Justify your answers. xRy if and only if x lives within 400 miles of y. xRy if and only if x is the father of y. xRy if and only if x is a first cousin of y. xRy if and only if x and y were born in the same year. xRy if and only if x and y have the same mother. xRy if and only if x and y have the same hair colour.arrow_forwardFor each of the following relations R defined on the set A of all triangles in a plane, determine whether R is reflexive, symmetric, or transitive. Justify your answers. a. aRb if and only if a is similar to b. b. aRb if and only if a is congruent to b.arrow_forward21. A relation on a nonempty set is called irreflexive if for all. Which of the relations in Exercise 2 are irreflexive? 2. In each of the following parts, a relation is defined on the set of all integers. Determine in each case whether or not is reflexive, symmetric, or transitive. Justify your answers. a. if and only if b. if and only if c. if and only if for some in . d. if and only if e. if and only if f. if and only if g. if and only if h. if and only if i. if and only if j. if and only if. k. if and only if.arrow_forward
- 2. In each of the following parts, a relation is defined on the set of all integers. Determine in each case whether or not is reflexive, symmetric or transitive. Justify your answers. a. if and only if . b. if and only if . c. if and only if for some in . d. if and only if . e. if and only if . f. if and only if . g. if and only if . h. if and only if . i. if and only if . j. if and only if . k. if and only if .arrow_forwardLet (A) be the power set of the nonempty set A, and let C denote a fixed subset of A. Define R on (A) by xRy if and only if xC=yC. Prove that R is an equivalence relation on (A).arrow_forwardIn Exercises 1324, prove the statements concerning the relation on the set Z of all integers. If 0xy, then x2y2.arrow_forward
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,