Atkins' Physical chemistry
11th Edition
ISBN: 9780198814740
Author: ATKINS, P. W. (peter William), 1940- (author.)
Publisher: Oxford University Press,
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 9D.2AE
Interpretation Introduction
Interpretation:
The molecular orbital diagram for
Concept introduction:
The fundamental concept of the valence-bond wavefunction for hydrogen molecule can be applied for the diatomic and polyatomic molecules. Molecular orbital wavefunction are the linear combination of atomic orbitals. Antibonding molecular orbitals are formed by the in-phase interactions of two different orbitals and bonding interactions are formed by the out of phase interactions of two different orbitals.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
5
What would the complete ionic reaction be if aqueous solutions of potassium sulfate and barium acetate were mixed?
ed
of
Select one:
O a
2 K SO4 + Ba2 +2 C₂H3O21
K+SO4 + Ba2+ + 2 C2H3O21
K+SO42 + Ba2 +2 C2H3O2
BaSO4 +2 K+ + 2 C2H3O
estion
Ob.
O c.
Od.
2 K SO4 +Ba2 +2 C₂H₂O₂
BaSO4 + K+ + 2 C2H3O
BaSO4 + K + 2 C2H301
→Ba² +SO42 +2 KC2H3O
s page
(28 pts.) 7. Propose a synthesis for each of the following transformations. You must include the
reagents and product(s) for each step to receive full credit. The number of steps is provided.
(OC 4)
4 steps
4 steps
OH
b.
LTS
Solid:
AT=Te-Ti
Trial 1
Trial 2
Trial 3
Average
ΔΗ
Mass water, g
24.096
23.976
23.975
Moles of solid, mol
0.01763
001767
0101781
Temp. change, °C
2.9°C
11700
2.0°C
Heat of reaction, J
-292.37J -170.473
-193.26J
AH, kJ/mole
16.58K 9.647 kJ 10.85 kr
16.58K59.64701
KJ
mol
12.35k
Minimum AS,
J/mol K
41.582
mol-k
Remember: q = mCsAT (m = mass of water, Cs=4.184J/g°C) & qsin =-qrxn &
Show your calculations for:
AH in J and then in kJ/mole for Trial 1:
qa (24.0969)(4.1845/g) (-2.9°C)=-292.37J
qsin =
qrxn =
292.35 292.37J
AH in J = 292.375 0.2923kJ
0.01763m01
=1.65×107
AH in kJ/mol =
=
16.58K
0.01763mol
mol
qrx
Minimum AS in J/mol K (Hint: use the average initial temperature of the three trials, con
Kelvin.)
AS=AHIT
(1.65×10(9.64×103) + (1.0
Jimai
Chapter 9 Solutions
Atkins' Physical chemistry
Ch. 9 - Prob. 9B.1STCh. 9 - Prob. 9A.1DQCh. 9 - Prob. 9A.2DQCh. 9 - Prob. 9A.3DQCh. 9 - Prob. 9A.4DQCh. 9 - Prob. 9A.5DQCh. 9 - Prob. 9A.1AECh. 9 - Prob. 9A.1BECh. 9 - Prob. 9A.2AECh. 9 - Prob. 9A.2BE
Ch. 9 - Prob. 9A.3AECh. 9 - Prob. 9A.3BECh. 9 - Prob. 9A.4AECh. 9 - Prob. 9A.4BECh. 9 - Prob. 9A.5AECh. 9 - Prob. 9A.5BECh. 9 - Prob. 9A.6AECh. 9 - Prob. 9A.6BECh. 9 - Prob. 9A.7AECh. 9 - Prob. 9A.7BECh. 9 - Prob. 9A.8AECh. 9 - Prob. 9A.8BECh. 9 - Prob. 9A.1PCh. 9 - Prob. 9A.2PCh. 9 - Prob. 9A.3PCh. 9 - Prob. 9B.2DQCh. 9 - Prob. 9B.3DQCh. 9 - Prob. 9B.1AECh. 9 - Prob. 9B.1BECh. 9 - Prob. 9B.2AECh. 9 - Prob. 9B.2BECh. 9 - Prob. 9B.3AECh. 9 - Prob. 9B.3BECh. 9 - Prob. 9B.4AECh. 9 - Prob. 9B.4BECh. 9 - Prob. 9B.1PCh. 9 - Prob. 9B.2PCh. 9 - Prob. 9B.3PCh. 9 - Prob. 9C.1DQCh. 9 - Prob. 9C.2DQCh. 9 - Prob. 9C.3DQCh. 9 - Prob. 9C.4DQCh. 9 - Prob. 9C.1AECh. 9 - Prob. 9C.1BECh. 9 - Prob. 9C.2AECh. 9 - Prob. 9C.2BECh. 9 - Prob. 9C.3AECh. 9 - Prob. 9C.3BECh. 9 - Prob. 9C.4AECh. 9 - Prob. 9C.4BECh. 9 - Prob. 9C.5AECh. 9 - Prob. 9C.5BECh. 9 - Prob. 9C.6AECh. 9 - Prob. 9C.6BECh. 9 - Prob. 9C.2PCh. 9 - Prob. 9C.4PCh. 9 - Prob. 9D.1DQCh. 9 - Prob. 9D.2DQCh. 9 - Prob. 9D.3DQCh. 9 - Prob. 9D.4DQCh. 9 - Prob. 9D.1AECh. 9 - Prob. 9D.1BECh. 9 - Prob. 9D.2AECh. 9 - Prob. 9D.2BECh. 9 - Prob. 9D.3AECh. 9 - Prob. 9D.3BECh. 9 - Prob. 9D.4AECh. 9 - Prob. 9D.4BECh. 9 - Prob. 9D.5AECh. 9 - Prob. 9D.5BECh. 9 - Prob. 9D.6AECh. 9 - Prob. 9D.6BECh. 9 - Prob. 9D.7AECh. 9 - Prob. 9D.7BECh. 9 - Prob. 9D.1PCh. 9 - Prob. 9E.1DQCh. 9 - Prob. 9E.2DQCh. 9 - Prob. 9E.3DQCh. 9 - Prob. 9E.4DQCh. 9 - Prob. 9E.5DQCh. 9 - Prob. 9E.1AECh. 9 - Prob. 9E.1BECh. 9 - Prob. 9E.2AECh. 9 - Prob. 9E.2BECh. 9 - Prob. 9E.3AECh. 9 - Prob. 9E.3BECh. 9 - Prob. 9E.4AECh. 9 - Prob. 9E.4BECh. 9 - Prob. 9E.6AECh. 9 - Prob. 9E.6BECh. 9 - Prob. 9E.1PCh. 9 - Prob. 9E.2PCh. 9 - Prob. 9E.3PCh. 9 - Prob. 9E.6PCh. 9 - Prob. 9.1IACh. 9 - Prob. 9.2IACh. 9 - Prob. 9.4IA
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- For the compound: C8H17NO2 Use the following information to come up with a plausible structure: 8 This compound has "carboxylic acid amide" and ether functional groups. The peaks at 1.2ppm are two signals that are overlapping one another. One of the two signals is a doublet that represents 6 hydrogens; the other signal is a quartet that represents 3 hydrogens.arrow_forwardVnk the elements or compounds in the table below in decreasing order of their boiling points. That is, choose 1 next to the substance with the highest bolling point, choose 2 next to the substance with the next highest boiling point, and so on. substance C D chemical symbol, chemical formula or Lewis structure. CH,-N-CH, CH, H H 10: H C-C-H H H H Cale H 10: H-C-C-N-CH, Bri CH, boiling point (C) Сен (C) B (Choosearrow_forwardPlease help me find the 1/Time, Log [I^-] Log [S2O8^2-], Log(time) on the data table. With calculation steps. And the average for runs 1a-1b. Please help me thanks in advance. Will up vote!arrow_forward
- Q1: Answer the questions for the reaction below: ..!! Br OH a) Predict the product(s) of the reaction. b) Is the substrate optically active? Are the product(s) optically active as a mix? c) Draw the curved arrow mechanism for the reaction. d) What happens to the SN1 reaction rate in each of these instances: 1. Change the substrate to Br "CI 2. Change the substrate to 3. Change the solvent from 100% CH3CH2OH to 10% CH3CH2OH + 90% DMF 4. Increase the substrate concentration by 3-fold.arrow_forwardExperiment 27 hates & Mechanisms of Reations Method I visual Clock Reaction A. Concentration effects on reaction Rates Iodine Run [I] mol/L [S₂082] | Time mo/L (SCC) 0.04 54.7 Log 1/ Time Temp Log [ ] 13,20] (time) / [I] 199 20.06 23.0 30.04 0.04 0.04 80.0 22.8 45 40.02 0.04 79.0 21.6 50.08 0.03 51.0 22.4 60-080-02 95.0 23.4 7 0.08 0-01 1970 23.4 8 0.08 0.04 16.1 22.6arrow_forward(15 pts) Consider the molecule B2H6. Generate a molecular orbital diagram but this time using a different approach that draws on your knowledge and ability to put concepts together. First use VSEPR or some other method to make sure you know the ground state structure of the molecule. Next, generate an MO diagram for BH2. Sketch the highest occupied and lowest unoccupied MOs of the BH2 fragment. These are called frontier orbitals. Now use these frontier orbitals as your basis set for producing LGO's for B2H6. Since the BH2 frontier orbitals become the LGOS, you will have to think about what is in the middle of the molecule and treat its basis as well. Do you arrive at the same qualitative MO diagram as is discussed in the book? Sketch the new highest occupied and lowest unoccupied MOs for the molecule (B2H6).arrow_forward
- Q8: Propose an efficient synthesis of cyclopentene from cyclopentane.arrow_forwardQ7: Use compound A-D, design two different ways to synthesize E. Which way is preferred? Please explain. CH3I ONa NaOCH 3 A B C D E OCH3arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward
- (10 pts) The density of metallic copper is 8.92 g cm³. The structure of this metal is cubic close-packed. What is the atomic radius of copper in copper metal?arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning

Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Linear Combination of Atomic Orbitals LCAO; Author: Edmerls;https://www.youtube.com/watch?v=nq1zwrAIr4c;License: Standard YouTube License, CC-BY
Quantum Molecular Orbital Theory (PChem Lecture: LCAO and gerade ungerade orbitals); Author: Prof Melko;https://www.youtube.com/watch?v=l59CGEstSGU;License: Standard YouTube License, CC-BY