CHEMICAL PRINCIPLES PKG W/SAPLING
7th Edition
ISBN: 9781319086411
Author: ATKINS
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 9D.1BST
Interpretation Introduction
Interpretation:
The ligand field splitting energy of the complex
Concept Introduction:
The ligand field splitting energy of the complex can be calculated using the following formula,
Where
h is the Planck’s constant
c is the velocity of the light
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
CH3O
OH
OH
O hemiacetal
O acetal
O neither
O
0
O hemiacetal
acetal
neither
OH
hemiacetal
O acetal
O neither
CH2 O-CH2-CH3
CH3-C-OH
O hemiacetal
O acetal
CH3-CH2-CH2-0-c-O-CH2-CH2-CH3 O neither
HO-CH2
?
000
Ar
B
What would be the best choices for the missing reagents 1 and 3 in this synthesis?
1. PPh3
2
2. n-BuLi
3
Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like.
• Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is.
• Note: if one of your reagents needs to contain a halogen, use bromine.
Explanation
Check
Click and drag to start drawing a structure.
Predict the products of this organic reaction:
NaBH3CN
+
NH2
?
H+
Click and drag to start drawing a
structure.
×
Chapter 9 Solutions
CHEMICAL PRINCIPLES PKG W/SAPLING
Ch. 9 - Prob. 9A.1ASTCh. 9 - Prob. 9A.1BSTCh. 9 - Prob. 9A.1ECh. 9 - Prob. 9A.2ECh. 9 - Prob. 9A.3ECh. 9 - Prob. 9A.4ECh. 9 - Prob. 9A.5ECh. 9 - Prob. 9A.6ECh. 9 - Prob. 9A.7ECh. 9 - Prob. 9A.8E
Ch. 9 - Prob. 9A.9ECh. 9 - Prob. 9A.10ECh. 9 - Prob. 9A.11ECh. 9 - Prob. 9A.12ECh. 9 - Prob. 9A.13ECh. 9 - Prob. 9A.14ECh. 9 - Prob. 9B.1ASTCh. 9 - Prob. 9B.1BSTCh. 9 - Prob. 9B.2ASTCh. 9 - Prob. 9B.2BSTCh. 9 - Prob. 9B.1ECh. 9 - Prob. 9B.2ECh. 9 - Prob. 9B.3ECh. 9 - Prob. 9B.4ECh. 9 - Prob. 9B.5ECh. 9 - Prob. 9B.6ECh. 9 - Prob. 9B.7ECh. 9 - Prob. 9B.8ECh. 9 - Prob. 9B.9ECh. 9 - Prob. 9B.10ECh. 9 - Prob. 9B.11ECh. 9 - Prob. 9B.12ECh. 9 - Prob. 9B.13ECh. 9 - Prob. 9B.14ECh. 9 - Prob. 9B.15ECh. 9 - Prob. 9B.16ECh. 9 - Prob. 9C.1ASTCh. 9 - Prob. 9C.1BSTCh. 9 - Prob. 9C.2ASTCh. 9 - Prob. 9C.2BSTCh. 9 - Prob. 9C.3ASTCh. 9 - Prob. 9C.3BSTCh. 9 - Prob. 9C.4ASTCh. 9 - Prob. 9C.4BSTCh. 9 - Prob. 9C.1ECh. 9 - Prob. 9C.2ECh. 9 - Prob. 9C.3ECh. 9 - Prob. 9C.4ECh. 9 - Prob. 9C.5ECh. 9 - Prob. 9C.6ECh. 9 - Prob. 9C.7ECh. 9 - Prob. 9C.8ECh. 9 - Prob. 9C.9ECh. 9 - Prob. 9C.10ECh. 9 - Prob. 9C.11ECh. 9 - Prob. 9C.12ECh. 9 - Prob. 9C.13ECh. 9 - Prob. 9C.14ECh. 9 - Prob. 9C.15ECh. 9 - Prob. 9C.16ECh. 9 - Prob. 9C.17ECh. 9 - Prob. 9C.18ECh. 9 - Prob. 9C.19ECh. 9 - Prob. 9C.20ECh. 9 - Prob. 9D.1ASTCh. 9 - Prob. 9D.1BSTCh. 9 - Prob. 9D.2ASTCh. 9 - Prob. 9D.2BSTCh. 9 - Prob. 9D.3ASTCh. 9 - Prob. 9D.3BSTCh. 9 - Prob. 9D.4ASTCh. 9 - Prob. 9D.4BSTCh. 9 - Prob. 9D.1ECh. 9 - Prob. 9D.2ECh. 9 - Prob. 9D.3ECh. 9 - Prob. 9D.4ECh. 9 - Prob. 9D.5ECh. 9 - Prob. 9D.6ECh. 9 - Prob. 9D.7ECh. 9 - Prob. 9D.8ECh. 9 - Prob. 9D.9ECh. 9 - Prob. 9D.10ECh. 9 - Prob. 9D.11ECh. 9 - Prob. 9D.12ECh. 9 - Prob. 9D.13ECh. 9 - Prob. 9D.14ECh. 9 - Prob. 9D.15ECh. 9 - Prob. 9D.16ECh. 9 - Prob. 9D.17ECh. 9 - Prob. 9D.18ECh. 9 - Prob. 9D.19ECh. 9 - Prob. 9D.20ECh. 9 - Prob. 9D.21ECh. 9 - Prob. 9D.22ECh. 9 - Prob. 9D.23ECh. 9 - Prob. 9D.24ECh. 9 - Prob. 9D.25ECh. 9 - Prob. 9D.26ECh. 9 - Prob. 9D.27ECh. 9 - Prob. 9D.28ECh. 9 - Prob. 9D.29ECh. 9 - Prob. 9D.30ECh. 9 - Prob. 9D.31ECh. 9 - Prob. 9D.32ECh. 9 - Prob. 9D.33ECh. 9 - Prob. 9D.34ECh. 9 - Prob. 9.1ECh. 9 - Prob. 9.2ECh. 9 - Prob. 9.3ECh. 9 - Prob. 9.4ECh. 9 - Prob. 9.5ECh. 9 - Prob. 9.6ECh. 9 - Prob. 9.7ECh. 9 - Prob. 9.8ECh. 9 - Prob. 9.9ECh. 9 - Prob. 9.10ECh. 9 - Prob. 9.11ECh. 9 - Prob. 9.12ECh. 9 - Prob. 9.13ECh. 9 - Prob. 9.14ECh. 9 - Prob. 9.15ECh. 9 - Prob. 9.16ECh. 9 - Prob. 9.17ECh. 9 - Prob. 9.18ECh. 9 - Prob. 9.19ECh. 9 - Prob. 9.20ECh. 9 - Prob. 9.21ECh. 9 - Prob. 9.23ECh. 9 - Prob. 9.25E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Predict the organic products that form in the reaction below: + OH +H H+ ➤ ☑ X - Y Note: You may assume you have an excess of either reactant if the reaction requires more than one of those molecules to form the products. In the drawing area below, draw the skeletal ("line") structures of the missing organic products X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. Garrow_forwardPredict the organic products that form in the reaction below: OH H+ H+ + ☑ Y Note: You may assume you have an excess of either reactant if the reaction requires more than one of those molecules to form the products. In the drawing area below, draw the skeletal ("line") structures of the missing organic products X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. ✓ marrow_forwardDetermine the structures of the missing organic molecules in the following reaction: + H₂O +H H+ Y Z ☑ ☑ Note: Molecules that share the same letter have the exact same structure. In the drawing area below, draw the skeletal ("line") structures of the missing organic molecules X, Y, and Z. You may draw the structures in any arrangement that you like, so long as they aren't touching. Molecule X shows up in multiple steps, but you only have to draw its structure once. Click and drag to start drawing a structure. AP +arrow_forward
- Please help, this is all the calculations i got!!! I will rate!!!Approx mass of KMnO in vial: 3.464 4 Moss of beaker 3×~0. z Nax200: = 29.9219 Massof weacerv after remosimgain N2C2O4. Need to fill in all the missing blanks. ง ง Approx mass of KMnO4 in vials 3.464 Mass of beaker + 3x ~0-304: 29.9219 2~0.20 Miss of beaker + 2x- 29.7239 Mass of beaker + 1x~0.2g Naz (204 29-5249 Mass of beaver after removing as qa Na₂ C₂O T1 T2 T3 Final Buiet reading Initial butet reading (int)) Hass of NaOr used for Titration -reading (mL) calculation Results: 8.5ml 17mL 27.4mL Oml Om Oml T1 T2 T3 Moles of No CO Moles of KMO used LOF KM. O used Molenty of KMNO Averagem Of KMOWLarrow_forwardDraw the skeletal ("line") structure of 2-hydroxy-4-methylpentanal. Click and drag to start drawing a structure. Xarrow_forwardDetermine whether the following molecule is a hemiacetal, acetal, or neither and select the appropriate box below. Also, highlight the hemiacetal or acetal carbon if there is one. hemiacetal acetal Oneither OHarrow_forward
- What is the missing reactant R in this organic reaction? ་ ་ ་ ་ ་ ་ ་ ་ ་ ་ +R H3O+ • Draw the structure of R in the drawing area below. N • Be sure to use wedge and dash bonds if it's necessary to draw one particular enantiomer. Click and drag to start drawing a structure.arrow_forwardWrite the systematic name of each organic molecule: H structure H OH OH H OH name ☐ OHarrow_forwardDetermine whether each of the following molecules is a hemiacetal, acetal, or neither and select the appropriate box in the table. CH3O OH OH OH hemiacetal acetal neither hemiacetal acetal neither Xarrow_forward
- What is the missing reactant R in this organic reaction? N N དལ་ད་་ + R • Draw the structure of R in the drawing area below. • Be sure to use wedge and dash bonds if it's necessary to draw one particular enantiomer. Click and drag to start drawing a structure. ㄖˋarrow_forwardDraw the condensed structure of 4-hydroxy-3-methylbutanal. Click anywhere to draw the first atom of your structure.arrow_forwardUsing the bond energy values, calculate the energy that must be supplied or is released upon the polymerization of 755 monomers. If energy must be supplied, provide a positive number; if energy is released, provide a negative number. Hint: Avogadro’s number is 6.02 × 1023.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning

Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
The Bohr Model of the atom and Atomic Emission Spectra: Atomic Structure tutorial | Crash Chemistry; Author: Crash Chemistry Academy;https://www.youtube.com/watch?v=apuWi_Fbtys;License: Standard YouTube License, CC-BY