In research in cardiology and exercise physiology, it is often important to know the mass of blood pumped by a person’s heart in one stroke. This information can be obtained by means of a ballistocardiograph . The instrument works as follows. The subject lies on a horizontal pallet floating on a film of air. Friction on the pallet is negligible. Initially, the momentum of the system is zero. When the heart beats, it expels a mass m of blood into the aorta with speed υ, and the body and platform move in the opposite direction with speed V The blood velocity can be determined independently (e.g., by observing the Doppler shift of ultrasound). Assume that it is 50.0 cm/s in one typical trial. The mass of the subject plus the pallet is 54.0 kg. The pallet moves 6.00 × 10 -5 m in 0.160 s after one heartbeat. Calculate the mass of blood that leaves the heart. Assume that the mass of blood is negligible compared with the total mass of the person. (This simplified example illustrates the principle of ballistocardiography, but in practice a more sophisticated model of heart function is used.)
In research in cardiology and exercise physiology, it is often important to know the mass of blood pumped by a person’s heart in one stroke. This information can be obtained by means of a ballistocardiograph . The instrument works as follows. The subject lies on a horizontal pallet floating on a film of air. Friction on the pallet is negligible. Initially, the momentum of the system is zero. When the heart beats, it expels a mass m of blood into the aorta with speed υ, and the body and platform move in the opposite direction with speed V The blood velocity can be determined independently (e.g., by observing the Doppler shift of ultrasound). Assume that it is 50.0 cm/s in one typical trial. The mass of the subject plus the pallet is 54.0 kg. The pallet moves 6.00 × 10 -5 m in 0.160 s after one heartbeat. Calculate the mass of blood that leaves the heart. Assume that the mass of blood is negligible compared with the total mass of the person. (This simplified example illustrates the principle of ballistocardiography, but in practice a more sophisticated model of heart function is used.)
Solution Summary: The author calculates the mass of blood that leaves the heart by calculating the velocity of the pallet.
In research in cardiology and exercise physiology, it is often important to know the mass of blood pumped by a person’s heart in one stroke. This information can be obtained by means of a ballistocardiograph. The instrument works as follows. The subject lies on a horizontal pallet floating on a film of air. Friction on the pallet is negligible. Initially, the momentum of the system is zero. When the heart beats, it expels a mass m of blood into the aorta with speed υ, and the body and platform move in the opposite direction with speed V The blood velocity can be determined independently (e.g., by observing the Doppler shift of ultrasound). Assume that it is 50.0 cm/s in one typical trial. The mass of the subject plus the pallet is 54.0 kg. The pallet moves 6.00 × 10-5 m in 0.160 s after one heartbeat. Calculate the mass of blood that leaves the heart. Assume that the mass of blood is negligible compared with the total mass of the person. (This simplified example illustrates the principle of ballistocardiography, but in practice a more sophisticated model of heart function is used.)
a cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?
Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were:
222.22 800.00
61.11 641.67
0.00 588.89
11.11 588.89
8.33 588.89
11.11 588.89
5.56 586.11
2.78 583.33
Give in the answer window the calculated repeated experiment variance in m/s2.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.