Engineering Electromagnetics
9th Edition
ISBN: 9781260029963
Author: Hayt
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
thumb_up100%
Chapter 9, Problem 9.9P
A square filamentary loop of wire is 25 cm on a side and has a resistance of 125 El per meter length. The Loop lies in the z = 0 plane with its corners at (0, 0, 0), (0.25, 0, 0), (0.25, 0.25, 0), and (0, 0.25, 0) at t = 0. The loop is moving with a velocity vy = 50 m/s in the field Bz = 8 cos(1.5 Ă— 108t - 0.5x) đ�œ‡T. Develop a function of time that expresses the ohmic power being delivered to the loop.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
find the potential difference for each section and between the two ends of the wire
A solenoid displaces a material plunger ferromagnetic at a distance of 1 cm. The
inductance of the solenoid in function of the position of the plunger is given by:
L(x) = 0,05 – 20000((r - xo)) H,
where x ranges from 0 to 0.01 m and xo = 0.25 m
Is there a point where the force generated in the plunger is zero? If so, for what value
of x?
..........gsgs
Chapter 9 Solutions
Engineering Electromagnetics
Ch. 9 - Prob. 9.1PCh. 9 - Prob. 9.2PCh. 9 - Prob. 9.3PCh. 9 - A rectangular loop of wire containing a...Ch. 9 - The location of the sliding bar in Figure 9.5 is...Ch. 9 - Prob. 9.6PCh. 9 - The rails in Figure 9.6 each have a resistance of...Ch. 9 - A perfectly conducting filament is formed into a...Ch. 9 - A square filamentary loop of wire is 25 cm on a...Ch. 9 - (a) Show that the ratio of the amplitudes of the...
Ch. 9 - Let the internal dimensions of a coaxial capacitor...Ch. 9 - Prob. 9.12PCh. 9 - En free space it is known that E = E0/r sin...Ch. 9 - A voltage source V0, sin cot is connected between...Ch. 9 - Use each of Maxwells equations in point form to...Ch. 9 - Derive the continuity equation from Maxwells...Ch. 9 - The electric field intensity in the region...Ch. 9 - Prob. 9.18PCh. 9 - In Section 9.1. Faradays law was used to show that...Ch. 9 - Prob. 9.20PCh. 9 - (a) Show that under static field conditions; Eq....Ch. 9 - Prob. 9.22PCh. 9 - Prob. 9.23PCh. 9 - A vector potential is given as A = A0 cos(đ�œ”t =...Ch. 9 - Prob. 9.25PCh. 9 - Write Maxwells equations in point form in terms of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 4:08 O91% K/s The flexible loop in Figure has a radius of 29.6 cm and is in a magnetic field of magnitude 0.150 T. The loop is grasped at points A and B and stretched until its area is nearly zero. If it takes 0.200 s to close the loop, what is the magnitude of the average induced emf (in units of mV) in it during this time interval? A B Select one: A. 171.39 B. 118.82 C. 294.06 D. 381.67 E. 206.44arrow_forwardA solenoid displaces a material plunger ferromagnetic at a distance of 1 cm. The inductance of the solenoid in function of the position of the plunger is given by: L(x) = 0,05 – 20000((x – xo)) H, where x ranges from 0 to 0.01 m and xo = 0.25 m Determine the direction of the force generated in the plunger (same direction of x or in the opposite direction?), the point where the force is zero (if it exists) and the maximum force generated for a current of 1 Aarrow_forwardμ_0 = 4π×10^(−7) T.m/Aarrow_forward
- A conductor of radius a is bent into a circular loop of mean radius po (see Figure If p, = 10 cm and 2a = 1 cm, calculate the internal inductance of the loop. 200 turnsarrow_forwardA solenoid displaces a material plunger ferromagnetic at a distance of 1 cm. The inductance of the solenoid in function of the position of the plunger is given by: L(x) = 0,05 – 20000((x – xo)) H, where x ranges from 0 to 0.01 m and Xo = 0.25 m Calculate the maximum force generated in this solenoid for a current of 1 A.arrow_forwardPlease answer in typing format solution please only Please ASAP....arrow_forward
- The figure below shows a wire that forms a semicircle of radius R=10. 0 cm and two straight segments each of length 7.0 cm. The wire carries a current i = 42.0 mA.(a) What are the magnitude, and(b) direction of the magnetic field at point C?arrow_forwardThree long, parallel, straight wires each carrying a 8.0 A current pass through the vertices of an equilateral triangle (L= 8.0 cm) as shown in the figure below. Currents on wires B and C are out of page while that of wire A is into the page. What is the r and y components of the magnetic field vector at the point of the wire B? Give your answer in uT. В The answer is integer. L Carrow_forwardNeed stepwise ansarrow_forward
- Find the inductance per unit length of a very long solenoid with a unit length of N windings. The permeability of the core is μ.arrow_forwardA current is set up in a wire loop consisting of a semicircle of radius 4.08 cm, a smaller concentric semicircle, and two radial straight lengths, all in the same plane. Figure (a) shows the arrangement but is not drawn to scale. The magnitude of the magnetic field produced at the center of curvature is 47.55 µT. The smaller semicircle is then flipped over (rotated) until the loop is again entirely in the same plane (Figure (b)). The magnetic field produced at the (same) center of curvature now has magnitude 16.02 µT, and its direction is reversed. What is the radius of the smaller semicircle? Number 1.37 Units cm (b)arrow_forwardA straight wire along z-axis of length 2 meters extend from (0, 0, -1) to (0, 0. 1) and a current of 1 Ampere is passed through it. The magnetic field at a point along the z-axis at a distance of 3 meters from either end of the wire is given byarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
What Is a Plane Wave? — Lesson 2; Author: EMViso;https://www.youtube.com/watch?v=ES2WFevGM0g;License: Standard Youtube License