Engineering Electromagnetics
9th Edition
ISBN: 9781260029963
Author: Hayt
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 9.6P
To determine
The induced emf that results from a given magnetic flux density.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The force exerted on the length element dl at point P in the circular conductive ring in the figure,
Please choose one:
a.It is tangent to the ring on the note P.
b.It's inward throughout the OP.
C.It is outward throughout the OP.
D.It is in the direction of the magnetic field.
Example(6): A magnetic circuit containing an air gap is shown in Figure
below. With the dimension as marked, calculate the current in the coil to
establish a flux density of 0.6 T in the air gap. The core has the B - H
characteristics. Repeat above but correct for fringing and lamination.
Consider SF=0.95, FF 1.08 while is as above.
2 mm)
A-5cm²
A magnetic circuit has amagnetic field intensity of 400 AT/m. If the length of magneticpath is doubled and matianing the same magnetomotive force, how much is the newmagnetic field intensity?
Chapter 9 Solutions
Engineering Electromagnetics
Ch. 9 - Prob. 9.1PCh. 9 - Prob. 9.2PCh. 9 - Prob. 9.3PCh. 9 - A rectangular loop of wire containing a...Ch. 9 - The location of the sliding bar in Figure 9.5 is...Ch. 9 - Prob. 9.6PCh. 9 - The rails in Figure 9.6 each have a resistance of...Ch. 9 - A perfectly conducting filament is formed into a...Ch. 9 - A square filamentary loop of wire is 25 cm on a...Ch. 9 - (a) Show that the ratio of the amplitudes of the...
Ch. 9 - Let the internal dimensions of a coaxial capacitor...Ch. 9 - Prob. 9.12PCh. 9 - En free space it is known that E = E0/r sin...Ch. 9 - A voltage source V0, sin cot is connected between...Ch. 9 - Use each of Maxwells equations in point form to...Ch. 9 - Derive the continuity equation from Maxwells...Ch. 9 - The electric field intensity in the region...Ch. 9 - Prob. 9.18PCh. 9 - In Section 9.1. Faradays law was used to show that...Ch. 9 - Prob. 9.20PCh. 9 - (a) Show that under static field conditions; Eq....Ch. 9 - Prob. 9.22PCh. 9 - Prob. 9.23PCh. 9 - A vector potential is given as A = A0 cos(đ�œ”t =...Ch. 9 - Prob. 9.25PCh. 9 - Write Maxwells equations in point form in terms of...
Knowledge Booster
Similar questions
- Amagnetic field is being generated by a current of 2.0A flowing through 180 turns of wire on a core having a reluctance of 210000.0 At/Wb. Determine the flux of the circuit in mWb.arrow_forwardRotating Choose... Magnetic Field Mutual Choose... inductancearrow_forwardElectromagnetic circuit boardarrow_forward
- Amagnetic circuit has an average length of 1.4 m and a cross-sectional area of 0.25 m2. Excitation is provided by a 140 -turn, 30-Q, coil. Determine the voltage required to establish a flux density of 1.56 T. The reluctance of the magnetic circuit, when opera ting at this flux density is 768 A-t/Wb.arrow_forwardQ4// A ring of a mean diameter 30 cm and cross sectional area of 15 cm2 is made up of semi – circular sections of cast iron and cast steel. If each joint has an air gap of 0.25 mm. Find amper turns required to produce a flux of 7 x 10 weber in the magnetic circuit. The relative permeability of steel and iron are 852 and 165 respectively. - OA- Amper turns required= 1105 OB- Amper turns required= 1995 OC- Amper turns required= 2250 OD- Amper turns required= 3150 OE- None of above ارسال الاجابةarrow_forwardplease solve quickly step by step please sirarrow_forward
- a. Plot the direction of flux at the main poles. b. Draw the current direction at the main poles. c. Draw the direction of flux at the auxiliary poles. d. Draw the current direction at the auxiliary poles. e. Show the direction of rotation by drawing a shape.arrow_forwardPlease please solvearrow_forwardPlz harryarrow_forward
- Three long, parallel conductors cach carry a current of I= 2.00 A. Figure P30.15 is an end view of the conduc- tors, with each current coming out of the page. Taking a = 1.00 cm, determine the magnitude and direction of the magnetic field at (a) point A, (b) point B, and (c) point C. Barrow_forwardA ten-turn solenoid has a ferromagnetic core with a relative permeability of 10,000. The length of the solenoid is l=10 cm and its cross section area is A=1 cm2. The amount of current driving the solenoid is 0.1 A. Determine the magnetic flux intensity H in the core. Provide your answer in A/m. Round off to your answer to one decimal.arrow_forwardConsider a ferromagnetic ring (nucleus) that has a mean circumference of 40 cm, 300coiled copper turns and a sectional area of 5 cm2. A current of 2 is appliedA to winding, producing a flux of 1.5 mWb.Determine the permeability of the core material.Determine the relative permeability of the core material.If the ferromagnetic ring has an air gap of 2 mm. Find the required MMFso that the flux density in the gap is 0.5 T.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,