
Concept explainers
(a)
Interpretation:
The number of milliliters of
Concept introduction:
Molarity is the ratio of the number of moles of solute to the volume of the solution in liters.
The molarity is given by the formula,

Answer to Problem 9.99E
The number of milliliters of
Explanation of Solution
The volume and molarity of
The number of millimoles of
The above formula can be written as follows:
Substitute the volume and molarity in equation (2).
Thus, the number of millimoles of
The neutralization reaction is given below.
From the above equation, the molar ratio of
The given molarity of
Substitute the molarity and millimoles of
Hence, the number of milliliters of
The number of milliliters of
(b)
Interpretation:
The number of milliliters of
Concept introduction:
Molarity is the ratio of the number of moles of solute to the volume of the solution in liters.
The molarity is given by the formula,

Answer to Problem 9.99E
The number of milliliters of
Explanation of Solution
The volume and molarity of
The number of millimoles of
The above formula can be written as follows:
Substitute the volume and molarity in equation (2).
Thus, the number of millimoles of
The neutralization reaction is given below.
From the above equation, the molar ratio of
Hence, the number of millimoles of
The given molarity of
Substitute the molarity and millimoles of
Hence, the number of milliliters of
The number of milliliters of
(c)
Interpretation:
The number of milliliters of
Concept introduction:
Molarity is the ratio of the number of moles of solute to the volume of the solution in liters.
The molarity is given by the formula,

Answer to Problem 9.99E
The number of milliliters of
Explanation of Solution
The volume and molarity of
The number of millimoles of
The above formula can be written as follows:
Substitute the volume and molarity in equation (2).
Thus, the number of millimoles of
The neutralization reaction is given below.
From the above equation, the molar ratio of
The given molarity of
Substitute the molarity and moles of
Hence, the number of milliliters of
The number of milliliters of
(d)
Interpretation:
The number of milliliters of
Concept introduction:
Molarity is the ratio of the number of moles of solute to the volume of the solution in liters.
The molarity is calculated by the formula,

Answer to Problem 9.99E
The number of milliliters of
Explanation of Solution
The number of moles a substance is given as,
Where,
•
•
The number of moles of
The above formula can be written as follows:
Equate equation (1) and (3).
The molar mass of
Substitute the molar mass and given mass of
Thus, the molarity of
The number of millimoles of
The above formula can be written as follows:
Substitute the volume and molarity in above formula.
Thus, the number of millimoles of
The neutralization reaction is given below.
From the above equation, the molar ratio of
Hence, the number of millimoles of
The given molarity of
Substitute the molarity and moles of
Hence, the number of milliliters of
The number of milliliters of
(e)
Interpretation:
The number of milliliters of
Concept introduction:
Molarity is the ratio of the number of moles of solute to the volume of the solution in liters.
The molarity is given by the formula,

Answer to Problem 9.99E
The number of milliliters of
Explanation of Solution
The moles and volume of
The molarity of
Substitute the volume and moles in above formula.
Thus, the molarity of
The number of millimoles of
The above formula can be written as follows:
Substitute the volume and molarity in above formula.
Thus, the number of millimoles of
The neutralization reaction is given below.
From the above equation, the molar ratio of
Hence, the number of millimoles of
The given molarity of
Substitute the molarity and moles of
Hence, the number of milliliters of
The number of milliliters of
(f)
Interpretation:
The number of milliliters of
Concept introduction:
Molarity is the ratio of the number of moles of solute to the volume of the solution in liters.
The molarity is given by the formula,

Answer to Problem 9.99E
The number of milliliters of
Explanation of Solution
The moles and volume of
The molarity of
Substitute the volume and moles in above formula.
Thus, the molarity of
The number of millimoles of
The above formula can be written as follows:
Substitute the volume and molarity in above formula.
Thus, the number of millimoles of
The neutralization reaction is given below.
From the above equation, the molar ratio of
Hence, the number of millimoles of
The given molarity of
Substitute the molarity and moles of
Hence, the number of milliliters of
The number of milliliters of
Want to see more full solutions like this?
Chapter 9 Solutions
Study Guide with Student Solutions Manual for Seager/Slabaugh/Hansen's Chemistry for Today: General, Organic, and Biochemistry, 9th Edition
- Order the following series of compounds from highest to lowest reactivity to electrophilic aromatic substitution, explaining your answer: 2-nitrophenol, p-Toluidine, N-(4-methylphenyl)acetamide, 4-methylbenzonitrile, 4-(trifluoromethyl)benzonitrile.arrow_forwardOrdene la siguiente serie de compuestos de mayor a menor reactividad a la sustitución aromática electrofílica, explicando su respuesta: ácido bencenosulfónico, fluorobenceno, etilbenceno, clorobenceno, terc-butilbenceno, acetofenona.arrow_forwardCan I please get all final concentrations please!arrow_forward
- State the detailed mechanism of the reaction of benzene with isopropanol in sulfuric acid.arrow_forwardDo not apply the calculations, based on the approximation of the stationary state, to make them perform correctly. Basta discard the 3 responses that you encounter that are obviously erroneous if you apply the formula to determine the speed of a reaction. For the decomposition reaction of N2O5(g): 2 N2O5(g) · 4 NO2(g) + O2(g), the following mechanism has been proposed: N2O5 -> NO2 + NO3_(K1) NO2 + NO3 →> N2O5 (k-1) → NO2 + NO3 → NO2 + O2 + NO (K2) NO + N2O5 → NO2 + NO2 + NO2 (K3) Give the expression for the acceptable rate. (A). d[N₂O] dt = -1 2k,k₂[N205] k₁+k₂ d[N₂O5] (B). dt =-k₁[N₂O₂] + k₁[NO2][NO3] - k₂[NO2]³ (C). d[N₂O] dt =-k₁[N₂O] + k₁[N205] - K3 [NO] [N205] (D). d[N2O5] =-k₁[NO] - K3[NO] [N₂05] dtarrow_forwardA 0.10 M solution of acetic acid (CH3COOH, Ka = 1.8 x 10^-5) is titrated with a 0.0250 M solution of magnesium hydroxide (Mg(OH)2). If 10.0 mL of the acid solution is titrated with 20.0 mL of the base solution, what is the pH of the resulting solution?arrow_forward
- For the decomposition reaction of N2O5(g): 2 N2O5(g) → 4 NO2(g) + O2(g), the following mechanism has been proposed: N2O5 NO2 + NO3 (K1) | NO2 + NO3 → N2O5 (k-1) | NO2 + NO3 NO2 + O2 + NO (k2) | NO + N2O51 NO2 + NO2 + NO2 (K3) → Give the expression for the acceptable rate. → → (A). d[N205] dt == 2k,k₂[N₂O₂] k₁+k₁₂ (B). d[N2O5] =-k₁[N₂O] + k₁[NO₂] [NO3] - k₂[NO₂]³ dt (C). d[N2O5] =-k₁[N₂O] + k [NO] - k₂[NO] [NO] d[N2O5] (D). = dt = -k₁[N2O5] - k¸[NO][N₂05] dt Do not apply the calculations, based on the approximation of the stationary state, to make them perform correctly. Basta discard the 3 responses that you encounter that are obviously erroneous if you apply the formula to determine the speed of a reaction.arrow_forwardFor the decomposition reaction of N2O5(g): 2 N2O5(g) → 4 NO2(g) + O2(g), the following mechanism has been proposed: N2O5 NO2 + NO3 (K1) | NO2 + NO3 → N2O5 (k-1) | NO2 + NO3 NO2 + O2 + NO (k2) | NO + N2O51 NO2 + NO2 + NO2 (K3) → Give the expression for the acceptable rate. → → (A). d[N205] dt == 2k,k₂[N₂O₂] k₁+k₁₂ (B). d[N2O5] =-k₁[N₂O] + k₁[NO₂] [NO3] - k₂[NO₂]³ dt (C). d[N2O5] =-k₁[N₂O] + k [NO] - k₂[NO] [NO] d[N2O5] (D). = dt = -k₁[N2O5] - k¸[NO][N₂05] dt Do not apply the calculations, based on the approximation of the stationary state, to make them perform correctly. Basta discard the 3 responses that you encounter that are obviously erroneous if you apply the formula to determine the speed of a reaction.arrow_forwardR lactam or lactone considering as weak acid or weak base and whyarrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning




