(a)
Interpretation:
For the reaction
Concept Introduction:
Le Chatelier’s principle:
If some forces applied, the system at equilibrium will get disrupted. This change in equilibrium can be due to the change in pressure or temperature. The change in reactant concentration can also disrupt the equilibrium. Over time, the forward and backward reaction become equal and will attain a new equilibrium. The equilibrium will shifts to right, if more products are formed and the system will shifts to left, if more reactants are formed.
The principle states that if some stress is applied to the system at equilibrium, the system will adjust itself in a direction which reduces the stress.
Temperature Changes:
Heat is one of the product in exothermic reaction and heat is used up in endothermic reaction.
Consider an exothermic reaction;
If heat is added up, then the reaction will shift to left so that the amount of heat will decrease.
Lowering the temperature will make the reaction to shift towards right.
Consider an endothermic reaction;
Increase in temperature will shift the reaction towards right.
If heat is added up, then the reaction will shift towards right.
(b)
Interpretation:
For the reaction
Concept Introduction:
Le Chatelier’s principle:
If some forces applied, the system at equilibrium will get disrupted. This change in equilibrium can be due to the change in pressure or temperature. The change in reactant concentration can also disrupt the equilibrium. Over time, the forward and backward reaction become equal and will attain a new equilibrium. The equilibrium will shifts to right, if more products are formed and the system will shifts to left, if more reactants are formed.
The principle states that if some stress is applied to the system at equilibrium, the system will adjust itself in a direction which reduces the stress.
(c)
Interpretation:
For the reaction
Concept Introduction:
Le Chatelier’s principle:
The principle states that if some stress is applied to the system at equilibrium, the system will adjust itself in a direction which reduces the stress and attain a new equilibrium.
(d)
Interpretation:
For the reaction
Concept Introduction:
Le Chatelier’s principle:
The principle states that if some stress is applied to the system at equilibrium, the system will adjust itself in a direction which reduces the stress and attain a new equilibrium.
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
General, Organic, And Biological Chemistry, Hybrid (with Owlv2 Quick Prep For General Chemistry Printed Access Card)
- Q1. (a) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH3. Use curved arrows to show the electron movement. (b) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH4*. Use curved arrows to show the electron movement.arrow_forwardWhich is NOT the typical size of a bacteria? 1000 nm 0.001 mm 0.01 mm 1 umarrow_forwardNonearrow_forward
- Show work. don't give Ai generated solutionarrow_forwardPart II. count the expected number of signals in the 1H-NMR spectrum of these compounds HO 0 одев * Cl -cl "D"arrow_forwardPart I. Create a splitting tree diagram to predict the multiplet pattern of proton Hb in the compound below: 3 (Assume that "Jab >>> ³JbC) Ha Hb He он Ha NH2 Ha HCarrow_forward
- SH 0 iq noitzouDarrow_forwardNonearrow_forward+ HCl →? Draw the molecule on the canvas by choosing buttons from the Tools (for bonas), Atoms and Advanced Template toolbars. The single bond is active by default. + M C + H± 2D EXP. CONT. K ? L 1 H₁₂C [1] A HCN O S CH3 CH 3 CI Br HC H₂ CH CH CH3 - P Farrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning