On a horizontal air track, a glider of mass m carries a Γ-shaped post. The post supports a small dense sphere, also of mass m , hanging just above the top of the glider on a cord of length L . The glider and sphere are initially at rest with the cord vertical. A constant horizontal force of magnitude F is applied to the glider, moving it through displacement x 1 ; then the force is removed. During the time interval when the force is applied, the sphere moves through a displacement with horizontal component x 2 . (a) Find the horizontal component of the velocity of the center of mass of the glider–sphere system when the force is removed. (b) After the force is removed, the glider continues to move on the track and the sphere swings back and forth, both without friction. Find an expression for the largest angle the cord makes with the vertical.
On a horizontal air track, a glider of mass m carries a Γ-shaped post. The post supports a small dense sphere, also of mass m , hanging just above the top of the glider on a cord of length L . The glider and sphere are initially at rest with the cord vertical. A constant horizontal force of magnitude F is applied to the glider, moving it through displacement x 1 ; then the force is removed. During the time interval when the force is applied, the sphere moves through a displacement with horizontal component x 2 . (a) Find the horizontal component of the velocity of the center of mass of the glider–sphere system when the force is removed. (b) After the force is removed, the glider continues to move on the track and the sphere swings back and forth, both without friction. Find an expression for the largest angle the cord makes with the vertical.
Solution Summary: The author calculates the horizontal velocity of the centre of mass of glider and sphere system.
On a horizontal air track, a glider of mass m carries a Γ-shaped post. The post supports a small dense sphere, also of mass m, hanging just above the top of the glider on a cord of length L. The glider and sphere are initially at rest with the cord vertical. A constant horizontal force of magnitude F is applied to the glider, moving it through displacement x1; then the force is removed. During the time interval when the force is applied, the sphere moves through a displacement with horizontal component x2. (a) Find the horizontal component of the velocity of the center of mass of the glider–sphere system when the force is removed. (b) After the force is removed, the glider continues to move on the track and the sphere swings back and forth, both without friction. Find an expression for the largest angle the cord makes with the vertical.
The shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along
its axis.
5.6 m.
4 m-
B
Part A
Determine the compressive force along leg AB.
Express your answer to three significant figures and include the appropriate units.
FAB =
Value
Submit
Request Answer
Part B
Units
?
Determine the compressive force along leg CB.
Express your answer to three significant figures and include the appropriate units.
FCB=
Value
Submit
Request Answer
Part C
?
Units
Determine the tension in the winch cable DB.
Express your answer with the appropriate units.
2m
Part A
(Figure 1) shows a bucket suspended from a cable by means of a small
pulley at C.
If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long.
Express your answer to three significant figures and include the appropriate units.
Figure
4 m
B
НА
x =
Value
Submit
Request Answer
Provide Feedback
<
1 of 1
T
1 m
Units
?
The particle in is in equilibrium and F4 = 165 lb.
Part A
Determine the magnitude of F1.
Express your answer in pounds to three significant figures.
ΑΣΦ
tvec
F₁ =
Submit
Request Answer
Part B
Determine the magnitude of F2.
Express your answer in pounds to three significant figures.
ΑΣΦ
It vec
F2 =
Submit
Request Answer
Part C
Determine the magnitude of F3.
Express your answer in pounds to three significant figures.
?
?
lb
lb
F₂
225 lb
135°
45°
30°
-60°-
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.