Concept explainers
a.
Interpretation: The molecules that contain polar bonds; the polar molecules and the non-polar molecules from the given molecules are to be identified.
Concept introduction: Polarity in bond arises due to the difference in electronegativity of the bonded atoms.
If the net dipole moment of the molecule is zero, the molecule is non-polar.
If the molecule has some net dipole moment than the molecule is polar.
The overall polarity of the molecule is determined by calculating the vector sum of the individual bond polarities.
To identify: The molecules that contain polar bonds.
a.

Answer to Problem 9.45QP
Solution
All the molecules contain polar bonds in there structure.
Explanation of Solution
Explanation
Polarity in bond arises due to the difference in electronegativity of the bonded atoms.
For molecule (a)
In , there is difference in electronegativity of carbon and chlorine atoms because chlorine is more electronegative than carbon.
Therefore, the bonds in is polar.
For molecule (b)
In , there is difference in electronegativity of carbon and hydrogen atom because carbon is more electronegative than hydrogen.
Therefore, the bond in
is polar.
In , there is difference in electronegativity of carbon and chlorine atom because chlorine is more electronegative than carbon.
Therefore, the bond in
is polar.
For molecule (c)
In , there is difference in electronegativity of carbon and oxygen atoms because oxygen is more electronegative than carbon.
Therefore, the bonds in
is polar.
For molecule (d)
In , there is difference in electronegativity of sulphur and hydrogen atom because sulphur is more electronegative than hydrogen.
Therefore, the bond in
is polar.
For molecule (e)
In , there is difference in electronegativity of sulphur and oxygen atoms because oxygen is more electronegative than sulphur.
Therefore, the bond in
is polar.
b.
To identify: The molecules that are polar.
b.

Answer to Problem 9.45QP
Solution
The polar molecules are ,
and
.
Explanation of Solution
Explanation
Polarity in bond arises due to the difference in electronegativity of the bonded atoms.
If the net dipole moment of the molecule is zero, the molecule is non polar in nature.
If the molecule has some net dipole moment than the molecule is polar in nature.
The overall polarity of the molecule is determined by calculating the vector sum of the individual bond polarities.
For molecule (a)
In , there is difference in electronegativity of carbon and chlorine atoms because chlorine is more electronegative than carbon.
Therefore, the bonds in are polar.
The dipole moment of bonds get cancelled out to give zero net dipole moment to the molecule.
Therefore, the is non polar.
For molecule (b)
In , there is difference in electronegativity of carbon and hydrogen atom because carbon is more electronegative than hydrogen.
Therefore, the bond in
is polar.
In , there is difference in electronegativity of carbon and chlorine atom because chlorine is more electronegative than carbon.
Therefore, the bonds in
is polar.
The sum of dipole moment of one bond and three
give a net dipole moment to the molecule.
Therefore, the molecule is polar.
For molecule (c)
In , there is difference in electronegativity of carbon and oxygen atoms because oxygen is more electronegative than carbon.
Therefore, the bonds in
is polar.
The dipole moment of bonds get cancelled out to give zero net dipole moment to the molecule.
Therefore, the is non polar.
For molecule (d)
In , there is difference in electronegativity of sulphur and hydrogen atom because sulphur is more electronegative than hydrogen.
Therefore, the bondS in
is polar.
The sum of dipole moment of two bonds gives a net dipole moment to the molecule.
Therefore, the molecule is polar.
For molecule (e)
In , there is difference in electronegativity of sulphur and oxygen atoms because oxygen is more electronegative than sulphur.
Therefore, the bonds in
is polar.
The structure of is bent. The sum of dipole moment of two
bonds gives a net dipole moment to the molecule.
Therefore, the molecule is polar.
c.
To identify: The molecules that are non polar.
c.

Answer to Problem 9.45QP
Solution
The polar molecules are and
.
Explanation of Solution
Explanation
Polarity in bond arises due to the difference in electronegativity of the bonded atoms.
If the net dipole moment of the molecule is zero, the molecule is non polar in nature.
If the molecule has some net dipole moment than the molecule is polar in nature.
The overall polarity of the molecule is determined by calculating the vector sum of the individual bond polarities.
For molecule (a)
In , there is difference in electronegativity of carbon and chlorine atoms because chlorine is more electronegative than carbon.
Therefore, the bonds in is polar.
The dipole moment of bonds get cancelled out to give zero net dipole moment to the molecule.
Therefore, the is non polar.
For molecule (b)
In , there is difference in electronegativity of carbon and hydrogen atom because carbon is more electronegative than hydrogen.
Therefore, the bond in
is polar.
In , there is difference in electronegativity of carbon and chlorine atom because chlorine is more electronegative than carbon.
Therefore, the bonds in
is polar.
The sum of dipole moment of one bond and three
give a net dipole moment to the molecule.
Therefore, the molecule is polar.
For molecule (c)
In , there is difference in electronegativity of carbon and oxygen atoms because oxygen is more electronegative than carbon.
Therefore, the bonds in
is polar.
The dipole moment of bonds get cancelled out to give zero net dipole moment to the molecule.
Therefore, the is non polar.
For molecule (d)
In , there is difference in electronegativity of sulphur and hydrogen atom because sulphur is more electronegative than hydrogen.
Therefore, the bond in
is polar.
The sum of dipole moment of two bonds gives a net dipole moment to the molecule.
Therefore, the molecule is polar.
For molecule (e)
In , there is difference in electronegativity of sulphur and oxygen atoms because oxygen is more electronegative than sulphur.
Therefore, the bonds in
is polar.
The structure of is bent. The sum of dipole moment of two
bonds gives a net dipole moment to the molecule.
Therefore, the molecule is polar.
Conclusion
- a. All the molecules contains polar bonds in there structure.
- b. The polar molecules are
,
and
.
- c. The polar molecules are
and
.
Want to see more full solutions like this?
Chapter 9 Solutions
EBK CHEMISTRY: THE SCIENCE IN CONTEXT,
- What is the IP for a amino acid- give an example what are the types of amino acids What are the structures of proteins The N-Terminal analysis by the Edman method shows saralasin contains sarcosine at the N-terminus. Partial hydrolysis of saralasin with dilute hydrochloric acid yields the following fragments: Try-Val-His Sar-Arg-Val His-Pro-Ala Val- Tyr- Val Arg-Val-Tyr What is the structure of saralasin?arrow_forwardWhat is the IP for a amino acid- give an example what are the types of amino acids What are the structures of proteins The N-Terminal analysis by the Edman method shows saralasin contains sarcosine at the N-terminus. Partial hydrolysis of saralasin with dilute hydrochloric acid yields the following fragments: Try-Val-His Sar-Arg-Val His-Pro-Ala Val- Tyr- Val Arg-Val-Tyr What is the structure of saralasin?arrow_forward> aw the missing intermediates 1 and 2, plus the final product 3, of this synthesis: 1. Eto 1. EtO¯ H3O+ 1 2 2. PrBr 2. PrBr Δ You can draw the three structures in any arrangement you like. 3 Click and drag to start drawing a structure. Explanation Check 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use Privacarrow_forward
- There are various factors that affect an equilibrium. Give 3 of these factors and explain using examples andequations how an equilibrium is affected by these factors. Please remember that this is a communication question so that you are communicating your understanding of the factors that affect and equilibrium.arrow_forwardEEZE LETCHUP ID Draw the most likely conjugate base resulting from this acid-base reaction. Include all lone pairs. Ignore inorganic byproducts. Drawing く NaOCH2CH3 :0: :0: 狗arrow_forwardAnswerarrow_forward
- 2. Provide a clear arrow-pushing mechanism for the following reactions. Do not skip proton transfers, do not combine steps, and make sure your arrows are clear enough to be interpreted without ambiguity. a. CH3 Ph OEt هد Ph CH3 Hint: the species on the left is an ynolate, which behaves a lot like an enolate.arrow_forwardb. CH3 H3C CH3 CH3 H3C an unexpected product, containing a single 9- membered ring the expected product, containing two fused rings H3C-I (H3C)2CuLi an enolatearrow_forwardb. H3C CH3 1. 2. H3O+ H3C MgBr H3Carrow_forward
- Predict the major products of this reaction: excess H+ NaOH ? A Note that the first reactant is used in excess, that is, there is much more of the first reactant than the second. If there won't be any products, just check the box under the drawing area instead. Explanation Check Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use Privarrow_forward1. For each of the reaction "railroads" below, you are either asked to give the structure(s) of the starting material(s) or product(s), or provide reagents/conditions to accomplish the transformation, as indicated by the boxes. a. NaOMe H+ .CO,H HO₂C MeOH (excess) MeOH H3C Br يع CH3 1. LiAlH4 2. H3O+ 3. PBг3 H3C 1. Et-Li 2. H3O+ -CO₂Me -CO₂Me OH CH3 CH3 ল CH3arrow_forwardPredict the intermediate 1 and final product 2 of this organic reaction: NaOMe ག1, ད།་, - + H You can draw 1 and 2 in any arrangement you like. 2 work up Note: if either 1 or 2 consists of a pair of enantiomers, just draw one structure using line bonds instead of 3D (dash and wedge) bonds at the chiral center. Explanation Check Click and drag to start drawing a structure. Х © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Parrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





