Concept explainers
(a)
Interpretation: The electronic configuration, bond order and the ionic species that can exist is to be predicted from given molecular ions.
Concept introduction: When two atomic orbitals come close to each other they lose their identity and form new pair of orbitals knows as molecular orbitals. Among the two molecular orbitals formed one has energy lower than the atomic orbitals is known as bonding molecular orbital and the other has energy higher than the atomic orbitals and is known as antibonding molecular orbital.
To determine: The orbital electronic configuration of the given ionic species.
(a)

Answer to Problem 9.103QP
Solution
The electronic configuration of molecular species is given as follows.
Explanation of Solution
Explanation
Nitrogen has five valence electrons.
Charge on
The total number of valence electrons in
The total number of valence electrons in
According to the molecular orbital theory the electronic configuration of
Oxygen has six valence electrons.
Charge on
The total number of valence electrons in
The total number of valence electrons in
According to the molecular orbital theory the electronic configuration of
Carbon has four valence electrons.
Charge on
The total number of valence electrons in
The total number of valence electrons in
According to the molecular orbital theory the electronic configuration of
Bromine has seven valence electrons.
Charge on
The total number of valence electrons in
The total number of valence electrons in
According to the molecular orbital theory the electronic configuration of
(b)
To determine: The bond order of given molecular ionic species.
(b)

Answer to Problem 9.103QP
Solution
All the given molecular ionic species except
Explanation of Solution
Explanation
The electronic configuration of
The bond order of
The number of bonding electrons in
The number of antibonding electrons in
Substitute the value of number of electrons in bonding and antibonding molecular orbitals of
The bond order of
The electronic configuration of
The bond order of
The number of bonding electrons in
The number of antibonding electrons in
Substitute the value of number of electrons in bonding and antibonding molecular orbitals of
The bond order of
The electronic configuration of
The bond order of
The number of bonding electrons in
The number of antibonding electrons in
Substitute the value of number of electrons in bonding and antibonding molecular orbitals of
The bond order of
The electronic configuration of
The bond order of
The number of bonding electrons in
The number of antibonding electrons in
Substitute the value of number of electrons in bonding and antibonding molecular orbitals of
The bond order of
(c)
To determine: The molecular ion species that are expected to exist
(c)

Answer to Problem 9.103QP
Solution
All the molecular species except
Explanation of Solution
Explanation
The bond order of a molecule is in direct proportion with its stability. Higher the bond order higher is the stability of the molecule.
Molecular species with nonzero bond order are expected to exist. All the given molecular ions except
Conclusion
The molecular species with nonzero bond order are expected to exist.
Want to see more full solutions like this?
Chapter 9 Solutions
EBK CHEMISTRY: THE SCIENCE IN CONTEXT,
- Draw the products formed when the following alkene is treated with 03 followed by Zn, H₂O. Click the "draw structure" button to launch the drawing utility. draw structure ...arrow_forwardCalculate the pH of 0.600 M solution of CH5N (Kb=4.37 x10-4) Hint: use assumption and check it!arrow_forwardDraw all stereoisomers formed when the following alkene is treated with mCPBA. Be sure to answer all parts. Part 1: How many stereoisomers of the product are possible? 1 Part 2 out of 2 Draw the product of the reaction, including stereochemistry. edit structure ...arrow_forward
- Draw the products formed when the following alkene is treated with 03 followed by Zn, H₂O. Be sure to answer all parts. draw structure ... smaller molar mass product draw structure ... larger molar mass productarrow_forwardComplete the two step reaction show the mechanism for all steps.arrow_forwardIdentify whether the reaction would proceed as a E1 or E2 mechanism.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





