Concept explainers
Use the Born-Haber cycle outlined in Section 9.3 for LiF to calculate the lattice energy of NaCl. [The heat of sublimation of Na is 108 kJ/mol and ΔH°f(NaCl ) = −411 kJ/mol. Energy needed to dissociate
Interpretation:
Using the Born-Haber cycle for
Concept Introduction:
Born-Haber cycle is based on Hess’s law to calculate the lattice enthalpy of ionic compounds and deals with energy changes in formation of ionic compounds.
The energy released when gaseous state ions of unlike charges that are infinitely farther apart combine to form a stable ionic solid is called Lattice energy. Conversely, the energy required to break the electrostatic force of attraction between the ions of unlike charges in the ionic solid and revert them to gaseous state is also termed as Lattice energy of an ionic solid.
Hess’s law is applied to calculate the enthalpy changes in a reaction. According to Hess’s law – “The overall enthalpy change of a reaction is equal to the sum of the enthalpy changes involving in each and every individual steps in the reaction”. Thus if a reaction involves ‘n’ steps then enthalpy change
Answer to Problem 9.25QP
Lattice energy of
Explanation of Solution
Given data:
The first step of Born-Haber cycle involves sublimation of solid
The second step of Born-Haber cycle involves dissociation of gaseous
The third step of Born-Haber cycle is ionization of gaseous
The fourth step of Born-Haber cycle is ionization of gaseous
The fifth and final step of Born-Haber cycle is formation of solid
Want to see more full solutions like this?
Chapter 9 Solutions
Chemistry
- Bond Enthalpy When atoms of the hypothetical element X are placed together, they rapidly undergo reaction to form the X2 molecule: X(g)+X(g)X2(g) a Would you predict that this reaction is exothermic or endothermic? Explain. b Is the bond enthalpy of X2 a positive or a negative quantity? Why? c Suppose H for the reaction is 500 kJ/mol. Estimate the bond enthalpy of the X2 molecule. d Another hypothetical molecular compound, Y2(g), has a bond enthalpy of 750 kJ/mol, and the molecular compound XY(g) has a bond enthalpy of 1500 kJ/mol. Using bond enthalpy information, calculate H for the following reaction. X2(g)+Y2(g)2XY(g) e Given the following information, as well as the information previously presented, predict whether or not the hypothetical ionic compound AX is likely to form. In this compound, A forms the A+ cation, and X forms the X anion. Be sure to justify your answer. Reaction: A(g)+12X2(g)AX(s)The first ionization energy of A(g) is 400 kJ/mol. The electron affinity of X(g) is 525 kJ/mol. The lattice energy of AX(s) is 100 kJ/mol. f If you predicted that no ionic compound would form from the reaction in Part e, what minimum amount of AX(s) lattice energy might lead to compound formation?arrow_forwardWrite all resonance structures of chlorobenzene, C6H5Cl, a molecule with the same cyclic structure as benzene. In all structures, keep the CCl bond as a single bond. Which resonance structures are the most important?arrow_forwardArrange the following series of compounds in order of increasing lattice energies. (a) NaBr, NaCl, KBr (b) MgO, CaO, CaCl2 (c) LiF, BeF2, BeOarrow_forward
- Calculate the lattice energy of potassium fluoride, KF, using the BornHaber cycle. Use thermodynamic data from Appendix C to obtain the enthalpy changes for each step. (Note: You will obtain a slightly different answer if you use values given in Chapter 8 for the ionization energy and electron affinity, which are energy values at 0 K rather than the enthalpy changes at 298 K.)arrow_forwardWhich of the following compounds requires the most energy to convert one mole of the solid into separate ions? (a) MgO (b) SrO (c) KF (d) CsF (e) MgF2arrow_forwardEstimate H for the following reactions using bond energies given in Table 8.5. 3CH2=CH2(g) + 3H2(g) 3CH2CH3(g) The enthalpies of formation for C6H6(g) and C6H12 (g) are 82.9 and 90.3 kJ/mol. respectively. Calculate H for the two reactions using standard enthalpies of formation from Appendix 4. Account for any differences between the results obtained from the two methods.arrow_forward
- Compare your answers from parts a and b of Exercise 69 of Chapter 3 with H values calculated for each reaction using standard enthalpies of formation in Appendix 4. Do enthalpy changes calculated from bond energies give a reasonable estimate of the actual values?arrow_forward5. Consider the following information: 1st ionization energy of Na(g) = 495.8 kJ/mol Bond dissociation energy of O2(g) = 498.4 kJ/mol 1st electron affinity of O(g)=-142.5 kJ/mol 2nd electron affinity of O¹(g) = 844 kJ/mol Lattice energy of Na2O(s) = -2608 kJ/mol Enthalpy of formation of Na2O(s) = -416 kJ/mol a Draw the Born-Haber cycle for Na₂O(s). b Calculate the unknown. 120 C Draw the Lewis symbol for Na₂O.arrow_forwardUse the following data to estimate Δ Hf° for barium chloride. Ba (s) + Cl2 (g) ⟶ BaCl2 (s) Lattice energy = -2056 kJ/mol First ionization energy of Ba = 503 kJ/mol Second ionization energy of Ba = 965 kJ/mol Electron affinity of Cl = -349 kJ/mol Bond energy of Cl2 = 239 kJ/mol Enthalpy of sublimation of Ba = 178 kJ/molarrow_forward
- 2. Calculate the lattice energy of MgO, given the following: Mg(s) + ¼O:(g) → Mg0(s) AH = -602 kJ AH = 150 kJ AH = 737 kJ Mg(s) → Mg(g) O(g) + 2e (g) → 0*(g) 20(g)→0:(g) Mg(g) → Mg*(g) + 2 e (g) AH = -494 kJ AH = 2180 kJarrow_forwardEstimate the ionic radius of Cs+. The lattice energy of CsCl is 633 kJ/mol. For CsCl the Madelungconstant, M, is 1.763, and the Born exponent, n, is 10.7. The ionic radius of Cl– is known to be 1.81 Åarrow_forwardUse the data given below to construct a Born-Haber cycle to determine the lattice energy of CaO. △ H°(kJ) Ca(s) → Ca(g) 193 Ca(g) → Ca+1(g) + e⁻ 590 Ca+1(g) → Ca+2(g) + e⁻ 1010 2 O(g) → O2(g) -498 O(g) + e⁻ → O-1(g) -141 O-1(g) + e⁻ → O-2(g) 878 Ca(s) + (1/2) O2(g) → CaO(s) -635arrow_forward
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning