Concept explainers
A new allotrope of oxygen, O4, has been reported. The exact structure of O4 is unknown, but the simplest possible structure would be a four-member ring consisting of oxygen-oxygen single bonds. The report speculated that the O4 molecule might be useful as a fuel “because it packs a lot of oxygen in a small space, so it might be even more energy-dense than the liquefied ordinary oxygen used in rocket fuel.” (a) Draw a Lewis structure for O4 and write a balanced chemical equation for the reaction between ethane, C2H6(g), and O4(g) to give carbon dioxide and water vapor. (b) Estimate ΔH° for the reaction. (c) Write a chemical equation illustrating the standard enthalpy of formation of O4(g) and estimate ΔH°f. (d) Assuming the oxygen allotropes are in excess, which will release more energy when reacted with ethane (or any other fuel): O2(g) or O4(g)? Explain using your answers to parts (a)–(c).
(a)
Interpretation:
Lewis structure of
Concept Introduction:
Electron dot structure also known as Lewis dot structure represents the number of valence electrons of an atom or constituent atoms bonded in a molecule. Each dot corresponds to one electron.
Balanced reaction is a chemical reaction in which number of atoms for each element in the reaction and the total charge are same on both reactant side and the product side.
Steps in balancing the information
- Step 1: Write the unbalanced equation
- Step 2: Find the coefficient to balance the equation.
According to the “Law of Conservation of Mass”, a chemical equation is balanced when the number of atoms involved in the reactant side is equal to that of the product side.
Explanation of Solution
Total valence electrons in
Accordingly Lewis structure of
Balanced chemical equation for the reaction of
(b)
Interpretation:
Concept Introduction:
Answer to Problem 9.149QP
Explanation of Solution
(c)
Interpretation:
A chemical equation illustrating the reaction of formation of
Concept Introduction:
Answer to Problem 9.149QP
A chemical equation illustrating the reaction of formation of
Explanation of Solution
A chemical equation illustrating the reaction of formation of
Enthalpy of formation of
(d)
Interpretation:
The energy released by reaction of
Answer to Problem 9.149QP
The energy released by reaction of
Explanation of Solution
Hence the energy released by reaction of
Want to see more full solutions like this?
Chapter 9 Solutions
Connect for Chemistry
- Using the bond dissociation enthalpies in Table 8.8, estimate the enthalpy of combustion of gaseous methane, CH4, to give water vapor and carbon dioxide gas.arrow_forwardWrite all resonance structures of chlorobenzene, C6H5Cl, a molecule with the same cyclic structure as benzene. In all structures, keep the CCl bond as a single bond. Which resonance structures are the most important?arrow_forwardGiven the following data: NO2(g) NO(g) + O(g)H = 233 kJ 2O3(g) 3O2(g)H = 427 kJ NO(g) + O3(g) NO2(g) + O2(g)H = 199 kJ Calculate the bond energy for the O2 bond, that is, calculate H for: O2(g) 2O(g)H = ?arrow_forward
- Explain the decomposition of nitroglycerin in terms of relative bond enthalpies.arrow_forwardBond Enthalpy When atoms of the hypothetical element X are placed together, they rapidly undergo reaction to form the X2 molecule: X(g)+X(g)X2(g) a Would you predict that this reaction is exothermic or endothermic? Explain. b Is the bond enthalpy of X2 a positive or a negative quantity? Why? c Suppose H for the reaction is 500 kJ/mol. Estimate the bond enthalpy of the X2 molecule. d Another hypothetical molecular compound, Y2(g), has a bond enthalpy of 750 kJ/mol, and the molecular compound XY(g) has a bond enthalpy of 1500 kJ/mol. Using bond enthalpy information, calculate H for the following reaction. X2(g)+Y2(g)2XY(g) e Given the following information, as well as the information previously presented, predict whether or not the hypothetical ionic compound AX is likely to form. In this compound, A forms the A+ cation, and X forms the X anion. Be sure to justify your answer. Reaction: A(g)+12X2(g)AX(s)The first ionization energy of A(g) is 400 kJ/mol. The electron affinity of X(g) is 525 kJ/mol. The lattice energy of AX(s) is 100 kJ/mol. f If you predicted that no ionic compound would form from the reaction in Part e, what minimum amount of AX(s) lattice energy might lead to compound formation?arrow_forwardA commercial process for preparing ethanol (ethyl alcohol), C2H5OH, consists of passing ethylene gas. C2H4, and steam over an acid catalyst (to speed up the reaction). The gas-phase reaction is Use bond enthalpies (Table 9.5) to estimate the enthalpy change for this reaction when 37.0 g of ethyl alcohol is produced.arrow_forward
- hat does temperature measure? Are the molecules in a beaker of warm water moving at the same speed as the molecules in a beaker of cold water? Explain? What is heat? Is heat the same as temperature?arrow_forwardThe standard enthalpies of formation for S(g), F(g), SF4(g), and SF6(g) are +278.8, +79.0, 775, and +1209 KJ/mol, respectively. a. Use these data to estimate the energy of an SF bond. b. Compare your calculated value to the value given in Table 3-3. What conclusions can you draw? c. Why are the Hf values for S(g) and F(g) not equal to zero, since sulfur and fluorine are elements?arrow_forwardEstimate H for the following reactions using bond energies given in Table 8.5. 3CH2=CH2(g) + 3H2(g) 3CH2CH3(g) The enthalpies of formation for C6H6(g) and C6H12 (g) are 82.9 and 90.3 kJ/mol. respectively. Calculate H for the two reactions using standard enthalpies of formation from Appendix 4. Account for any differences between the results obtained from the two methods.arrow_forward
- Using the standard enthalpy of formation data in Appendix G, calculate the bond energy of the carbon-sulfur double bond in CS2.arrow_forward5. For the reaction H2(g) + C2H4(g) C2H6(g) (a) Estimate the enthalpy of reaction, using the bond enthalpy values. (b) Calculate the enthalpy of reaction, using standard enthalpies of formation. (AH? for H2, C2H4, and C2H6 are 0 kJ/mol, 52.3 kJ/mol, and -84.7 kJ/mol, respectively.)arrow_forwardUsing the bond energy data from your text (or the internet), determine (show calculations for) the approximate enthalpy change , ∆H, for each of the following reactions: (a) Cl2 (g) + 3F2 (g) ⟶ 2ClF3 (g) (b) H2C=CH2 (g) + H2 (g) ⟶ H3CCH3 (g)arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning