What are the other two reasons for choosing (b) in Example 9.7? Example 9.7 Formaldehyde (CH 2 O), a liquid with a disagreeable odor, traditionally has been used to preserve laboratory specimens. Draw the most likely Lewis structure for the compound. Strategy A plausible Lewis structure should satisfy the octet rule for all the elements, except H, and have the formal charges (if any) distributed according to electronegativity guidelines. Solution The two possible skeletal structures are First we draw the Lewis structures for each of these possibilities: To show the formal charges, we follow the procedure given in Example 9.6. In (a) the C atom has a total of five electrons (one lone pair plus three electrons from the breaking of a single and a double bond). Because C has four valence electrons, the formal charge on the atom is 4 − 5 = −1. The O atom has a total of five electrons (one lone pair and three electrons from the breaking of a single and a double bond). Because O has six valence electrons, the formal charge on the atom is 6 − 5 = +1. In (b) the C atom has a total of four electrons from the breaking of two single bonds and a double bond, so its formal charge is 4 − 4 = 0. The O atom has a total of six electrons (two lone pairs and two electrons from the breaking of the double bond). Therefore, the formal charge on the atom is 6 − 6 = 0. Although both structures satisfy the octet rule, (b) is the more likely structure because it carries no formal charges. Check In each case make sure that the total number of valence electrons is 12. Can you suggest two other reasons why (a) is less plausible?
What are the other two reasons for choosing (b) in Example 9.7? Example 9.7 Formaldehyde (CH 2 O), a liquid with a disagreeable odor, traditionally has been used to preserve laboratory specimens. Draw the most likely Lewis structure for the compound. Strategy A plausible Lewis structure should satisfy the octet rule for all the elements, except H, and have the formal charges (if any) distributed according to electronegativity guidelines. Solution The two possible skeletal structures are First we draw the Lewis structures for each of these possibilities: To show the formal charges, we follow the procedure given in Example 9.6. In (a) the C atom has a total of five electrons (one lone pair plus three electrons from the breaking of a single and a double bond). Because C has four valence electrons, the formal charge on the atom is 4 − 5 = −1. The O atom has a total of five electrons (one lone pair and three electrons from the breaking of a single and a double bond). Because O has six valence electrons, the formal charge on the atom is 6 − 5 = +1. In (b) the C atom has a total of four electrons from the breaking of two single bonds and a double bond, so its formal charge is 4 − 4 = 0. The O atom has a total of six electrons (two lone pairs and two electrons from the breaking of the double bond). Therefore, the formal charge on the atom is 6 − 6 = 0. Although both structures satisfy the octet rule, (b) is the more likely structure because it carries no formal charges. Check In each case make sure that the total number of valence electrons is 12. Can you suggest two other reasons why (a) is less plausible?
Solution Summary: The author explains the two Lewis structures for formaldehyde labelled as ‘a’ and ‘b’ in example 9.7 of the book.
What are the other two reasons for choosing (b) in Example 9.7?
Example 9.7
Formaldehyde (CH2O), a liquid with a disagreeable odor, traditionally has been used to preserve laboratory specimens. Draw the most likely Lewis structure for the compound.
Strategy A plausible Lewis structure should satisfy the octet rule for all the elements, except H, and have the formal charges (if any) distributed according to electronegativity guidelines.
Solution The two possible skeletal structures are
First we draw the Lewis structures for each of these possibilities:
To show the formal charges, we follow the procedure given in Example 9.6. In (a) the C atom has a total of five electrons (one lone pair plus three electrons from the breaking of a single and a double bond). Because C has four valence electrons, the formal charge on the atom is 4 − 5 = −1. The O atom has a total of five electrons (one lone pair and three electrons from the breaking of a single and a double bond). Because O has six valence electrons, the formal charge on the atom is 6 − 5 = +1. In (b) the C atom has a total of four electrons from the breaking of two single bonds and a double bond, so its formal charge is 4 − 4 = 0. The O atom has a total of six electrons (two lone pairs and two electrons from the breaking of the double bond). Therefore, the formal charge on the atom is 6 − 6 = 0. Although both structures satisfy the octet rule, (b) is the more likely structure because it carries no formal charges.
Check In each case make sure that the total number of valence electrons is 12. Can you suggest two other reasons why (a) is less plausible?
9. compore the Following two Venctions IN
termy Of Ronction Rate and explan in
detail the reasoning that led to your conclusion
+He p₁₂ 11-
ㅐ 15
.. +He
H #H
H
/
H
b. Compare
the Following too reactions 14
terms of reaction Rate and explain in detail
the reasoning that led to your conclusion
Н
d-C-
tłu
Na
+2446
е
-ll +2n
"H
a.
•Write all of the possible products
For the Following ronction
А
-----
H
-
H
H
+ H₂0 H+
Н
b. in Rite the complete reaction Mechaniszn
For the Formation of each product.
·C. Suggest what Reaction conditions could
Result in each product being the major
Product of the veaction:
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell