
Concept explainers
(a)
Interpretation:
The Lewis electron-dot symbol of
Concept introduction:
Lewis electron-dot symbol is a representation employed to donate the valence electron present in the atom. It includes atom symbol to represent inner electrons and nucleus and the dots represent the valence present in the atom.
Steps to write the Lewis electron-dot symbol is as follows:
1. Determine the group of the atom so that the valence electron present in it can be calculated.
2. Put one dot at a time around the four sides of the atom.
3. Add more dots and pair them to complete the valence electron present in the atom.
The number of dots around metal is the number of electrons that metal can lose to form cation and the number of dots around nonmetal is the number of electrons that nonmetal can gain to form anion or the number of electrons that non-metal can share to form a covalent bond.
(b)
Interpretation:
The Lewis electron-dot symbol of
Concept introduction:
Lewis electron-dot symbol is a representation employed to donate the valence electron present in the atom. It includes atom symbol to represent inner electrons and nucleus and the dots represent the valence present in the atom.
Steps to write the Lewis electron-dot symbol is as follows:
1. Determine the group of the atom so that the valence electron present in it can be calculated.
2. Put one dot at a time around the four sides of the atom.
3. Add more dots and pair them to complete the valence electron present in the atom.
The number of dots around metal is the number of electrons that metal can lose to form cation and the number of dots around nonmetal is the number of electrons that nonmetal can gain to form anion or the number of electrons that non-metal can share to form a covalent bond.
(c)
The Lewis electron-dot symbol of
Concept introduction:
Lewis electron-dot symbol is a representation employed to donate the valence electron present in the atom. It includes atom symbol to represent inner electrons and nucleus and the dots represent the valence present in the atom.
Steps to write the Lewis electron-dot symbol is as follows:
1. Determine the group of the atom so that the valence electron present in it can be calculated.
2. Put one dot at a time around the four sides of the atom.
3. Add more dots and pair them to complete the valence electron present in the atom.
The number of dots around metal is the number of electrons that metal can lose to form cation and the number of dots around nonmetal is the number of electrons that nonmetal can gain to form anion or the number of electrons that non-metal can share to form a covalent bond.

Want to see the full answer?
Check out a sample textbook solution
Chapter 9 Solutions
Chemistry: The Molecular Nature of Matter and Change
- Please helparrow_forward(a) 21.8 Name the following compounds. & (b) Br (e) O₂N. (h) H (c) Br (d) NH2 ☑N Br H ہیں Ph (g) OMe бл .0-0.e 21.9 Draw a structural formula for each compound. (a) 2,3-Dinitrotoluene (c) Diphenylmethanol (e) p-Nitroaniline (b) 3-Propylanisole (d) m-Propylphenol (f) Pentabromobenzenearrow_forwardIs this the major product of this reaction?arrow_forward
- Help me solve this problem.arrow_forwardDraw a mechanism for the following synthetic transformation including reagents and any isolable intermediates throughout the process. Please clearly indicate bond cleavage/formation using curly arrows. MeO2Carrow_forwardCHEM 310 Quiz 8 Organic Chemistry II Due: Tuesday, April 25th, at 11:59 pm. This quiz is open textbook / open notes - but you must work alone. You cannot use the internet or the solutions manual for the book. Scan in your work and record an explanation of your mechanism. You may record this any way that you like. One way would be to start an individual Zoom meeting, start recording, "share your screen" and then talk through the problem. This will be converted to an .mp4 file that you can upload into Canvas using the "record/upload media" feature. Pyridine, benzoic acid and benzene are dissolved in ethyl acetate. Design and provide a plan / flow chart for separating and isolating each of these components. Pyridine and benzene are liquids at room temperature. Benzoic acid is a solid. You have ethyl acetate, 2M NaOH, 2M HCI and anhydrous MgSO4 available, as well as all the glassware and equipment that you used in the organic lab this year. Provide accurate acid/base reactions for any…arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





