Concept explainers
(a)
The moment of inertia of the transformed section.
Answer to Problem 9.1.1P
Explanation of Solution
Given:
A W 18 X 40 floor beam, the 28-day compressive strength of the concrete is
Calculation:
We have the modulus of elasticity of concrete as follows:
Where, the modulus of elasticity of concrete is
unit weight of concrete is
the 28-day compressive strength of concrete is
Substitute
Modular ratio by using the following formula:
Where, the modulus of elasticity of concrete is
the modulus of elasticity of steel is
and n is the modular ratio.
Substitute
Now the section will be transformed.
Since the modulus of elasticity of concrete can only be approximated, the usual practice of rounding n to the nearest whole number is sufficiently accurate. Thus,
The transformed width of the section is as following:
Where,
Substitute
Following is the section for the given set of conditions:
Data from the steel code:
DesignationImperial (in x lb/ft) | Depthh (in) | Widthw (in) | Web Thicknesstw (in) | Flange Thicknesstf (in) | Sectional Area (in2) | Weight (lbf/ft) | Static Parameters | |||
Moment of Inertia | Elastic Section Modulus | |||||||||
Ix (in4) | Iy (in4) | Sx (in3) | Sy (in3) | |||||||
W 18 x 40 | 17.9 | 6.02 | 0.315 | 0.525 | 11.8 | 40 | 612 | 19.1 | 68.4 | 6.4 |
The transformed section is shown in the above figure. The neutral axis is not known yet whether it lies in the steel or the concrete.
The location of the neutral axis can be found by applying the principle of moments with the axis of moments at the top of the slab. The computations are summarized in Table, and the distance from the top of the slab to the centroid is:
Component | |||
Concrete | |||
W 18 X 40 | |||
Sum |
The distance of centroid of the section is as follows:
Substitute
Since this is greater than 4 inches (the thickness of the slab) the neutral axis lies below the slab in the web. Applying the parallel axis theorem and tabulating the computations in table, we obtain the moment of inertia of the transformed section as:
Component | |||||
Concrete | |||||
W 18 X 40 | |||||
Sum |
Conclusion:
Therefore, total moment of inertia of the transformed section is
(b)
The stress at the top of the steel (indicate whether tension or compression), the stress at the bottom of the steel, and the stress at the top of the concrete.
Answer to Problem 9.1.1P
Explanation of Solution
Given:
Positive service load moment of 290 ft-kips.
Calculation:
For the computation of the stress at top of the steel is as following:
Where, the stress at the top of the steel is
The distance from neutral axis to top of steel section is as follows:
Here the thickness of the concrete slab is t.
Compute the stress at top of the steel as:
As, the centroid lies below the top of the steel, the stress is compressive.
Now, the stress at the bottom of the steel is as follows:
The distance from the neutral axis to bottom of steel section.
Where,
As, the centroid lies above the top of steel, the stress is tensile.
Stress at the top of the slab is as follows:
Where, n is the modular ratio is n.
As the concrete slab is above the neutral axis, hence the stress is compressive.
Conclusion:
Therefore, the stress at top of steel section is
Want to see more full solutions like this?
Chapter 9 Solutions
Bundle: Steel Design, Loose-leaf Version, 6th + Mindtap Engineering, 1 Term (6 Months) Printed Access Card
- : A 5ms- long current pulse is desired for two linear lamps connected in series and pumped at a total energy input of (1KJ). Each of lamps has an arc-length of (10cm) and a bore of (1cm). If we assume a peak current of (i, -650A). Design a multiple mesh network including number of LC sections, inductance and capacitance per section and capacitor voltage. Laser designarrow_forwardWhat would be the best way to handle when a contractor misses a concrete pour deadline which causes delays for other contractors?arrow_forwardPlease solve manuallyarrow_forward
- . The free fall distance was 1753 mm. The times for the release and catch recorded on the fall experiments were in millisecond: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Calculate the time taken for the fall for each experiment. Calculate for each fall the acceleration based on time and distance. Calculate the mean of the accelerations. Give in the answer window the calculated mean of accelerations in m/s2.arrow_forwardneed help. explain plzarrow_forward-Design the traffic signal intersection using all red 2 second, for all phase the truck percent 5% for all movement, and PHF -0.95 Check for capacity only Approach Through volume Right volume Left volume Lane width Number of lane Veh/hr Veh/hr Veh/hr m North 700 100 150 3.0 3 south 600 75 160 3.0 3 East 300 80 50 4.0 R west 400 50 55 4.0 2arrow_forward
- need helparrow_forwardFor the beam show below, draw A.F.D, S.F.D, B.M.D A 2 N M 10 kN.m B 2 M Carrow_forwardB: Find the numerical solution for the 2D equation below and calculate the temperature values for each grid point shown in Fig. 2 (show all steps). (Do only one trail using following initial values and show the final matrix) T₂ 0 T3 0 I need a real solution, not artificial intelligence locarrow_forward
- : +0 العنوان use only Two rods fins) having same dimensions, one made orass (k = 85 Wm K) and the mer of copper (k = 375 W/m K), having of their ends inserted into a furna. At a section 10.5 cm a way from furnace, the temperature of brass rod 120 Find the distance at which the ame temperature would be reached in the per rod ? both ends are ex osed to the same environment. ns 2.05 ۲/۱ ostrararrow_forwardI need a real solution, not artificial intelligencearrow_forwardI need detailed help solving this exercise from homework of Applied Mechanics. I do not really understand how to do, please do it step by step, not that long but clear. Thank you!arrow_forward
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage LearningMaterials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning