
Concept explainers
A.
Virtual address:
Virtual page number (VPN) and virtual page offset (VPO) are the two components of virtual address. Virtual address is “14 bits” format.
A.

Explanation of Solution
Given data:
Virtual address = 0x027C
The given virtual address is in hexadecimal format; convert it into binary format. Convert each Hexadecimal digit to a 4 bit binary equivalent:
0 | 2 | 7 | C |
0000 | 0010 | 0111 | 1100 |
The above binary values are filled in the virtual address 14 bits format as follows,
Virtual address format:
13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
B.
The page size (P) is 64bytes; using the page size finds the number of bits in VPN.
The formula for page size as follows:
Substitute “P = 64” in the above formula
Therefore, the “p” value represents virtual page offset (VPO) and physical page offset (PPO).
Number of bits in VPN is calculated as follows:
n = 14
p = 6
The VPN has additional two more components. They are TLB tag (TLBT) and TLB index (TLBI). The TLB is “4 ways” associative with “16” entries totally. Using the TLB find the value of TLBI and TLBT.
The formula for TLB as follows:
Substitute “T = 4” in the above formula
Therefore, the “t” value represents TLBI.
TLBI and TLBT are calculated as follows:
The “t” value represents TLBI. Therefore, the value of TLBI is “2”.
TLBI = 2
VPN = 8
Therefore, the value of TLBT is “6”.
B.

Explanation of Solution
Virtual address format:
13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
The higher-order “8 bits” of the virtual address represents “VPN” and the lower-order “6 bits” of the virtual address represents “VPO”. The higher-order “6 bits” of the VPN represents “TLBT” and the lower-order “2 bits” of the VPN represents “TLBI”
Value of VPN:
13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
VPN = 0000 1001 = 0x9
Value of TLB index:
7 | 6 |
0 | 1 |
TLB index = 01 = 0x1
Value of TLB tag:
13 | 12 | 11 | 10 | 9 | 8 |
0 | 0 | 0 | 0 | 1 | 0 |
TLB tag = 00 0010 = 0x2
TLB hit: No
There is a no valid match in the virtual address.
Page fault: No
There is a valid PTE and returns the cached PPN from the page table (PTE).
Value of PPN:
The cached PPN from the page table is “0x17”.
Value of VPO:
5 | 4 | 3 | 2 | 1 | 0 |
1 | 1 | 1 | 1 | 0 | 0 |
VPO = 11 1100 = 3C
Completed Table:
Parameter | Value |
VPN | 0x9 |
TLB index | 0x1 |
TLB tag | 0x2 |
TLB hit? (Y/N) | N |
Page fault? (Y/N) | N |
PPN | 0x17 |
C.
Physical address:
Physical page number (PPN) and physical page offset (PPO) are the two components of physical address. Physical address is “12 bits” format. The physical page offset (PPO) is identical to the virtual page offset (VPO).
C.

Explanation of Solution
Physical address format:
To form the physical address, concatenate the physical page number (PPN) from the PTE with virtual page offset (VPO) from the virtual address, which forms “0x05FC”.
Physical address = 0x05FC
The physical address is in hexadecimal format; convert it into binary format. Convert each Hexadecimal digit to a 4 bit binary equivalent:
0 | 5 | F | C |
0000 | 1011 | 1111 | 1100 |
The above binary values are filled in the physical address 12 bits format as follows,
11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
D.
The physical address has additional three more components. They are Byte offset within cache block (CO), Cache index (CI) and Cache tag (CT).
D.

Explanation of Solution
Physical address format:
11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
The lower-order “2 bits” of the physical address represents “CO”, the next “4 bits” represents “CI” and the remaining “6 bits” represents “CT”.
Value of Byte offset (CO):
1 | 0 |
0 | 0 |
CO = 11 = 0x0
Value of Cache index (CI):
5 | 4 | 3 | 2 |
1 | 1 | 1 | 1 |
CI = 1111 = 0xF
Value of Cache tag (CT):
11 | 10 | 9 | 8 | 7 | 6 |
0 | 1 | 0 | 1 | 1 | 1 |
CT = 01 0111 = 0x17
Cache hit: No
The cache index is not matches the cache tag.
Value of Cache byte:
The cached byte is not returned because the cache index is not matches the cache tag.
Completed Table:
Parameter | Value |
Byte offset | 0x0 |
Cache index | 0xF |
Cache tag | 0x17 |
Cache hit? (Y/N) | N |
Cache byte returned | --- |
Want to see more full solutions like this?
Chapter 9 Solutions
Computer Systems: A Programmer's Perspective (3rd Edition)
- Obtain the MUX design for the function F(X,Y,Z) = (0,3,4,7) using an off-the-shelf MUX with an active low strobe input (E).arrow_forwardI cannot program smart home automation rules from my device using a computer or phone, and I would like to know how to properly connect devices such as switches and sensors together ? Cisco Packet Tracer 1. Smart Home Automation:o Connect a temperature sensor and a fan to a home gateway.o Configure the home gateway so that the fan is activated when the temperature exceedsa set threshold (e.g., 30°C).2. WiFi Network Configuration:o Set up a wireless LAN with a unique SSID.o Enable WPA2 encryption to secure the WiFi network.o Implement MAC address filtering to allow only specific clients to connect.3. WLC Configuration:o Deploy at least two wireless access points connected to a Wireless LAN Controller(WLC).o Configure the WLC to manage the APs, broadcast the configured SSID, and applyconsistent security settings across all APs.arrow_forwardusing r language for integration theta = integral 0 to infinity (x^4)*e^(-x^2)/2 dx (1) use the density function of standard normal distribution N(0,1) f(x) = 1/sqrt(2pi) * e^(-x^2)/2 -infinity <x<infinity as importance function and obtain an estimate theta 1 for theta set m=100 for the estimate whatt is the estimate theta 1? (2)use the density function of gamma (r=5 λ=1/2)distribution f(x)=λ^r/Γ(r) x^(r-1)e^(-λx) x>=0 as importance function and obtain an estimate theta 2 for theta set m=1000 fir the estimate what is the estimate theta2? (3) use simulation (repeat 1000 times) to estimate the variance of the estimates theta1 and theta 2 which one has smaller variance?arrow_forward
- using r language A continuous random variable X has density function f(x)=1/56(3x^2+4x^3+5x^4).0<=x<=2 (1) secify the density g of the random variable Y you find for the acceptance rejection method. (2) what is the value of c you choose to use for the acceptance rejection method (3) use the acceptance rejection method to generate a random sample of size 1000 from the distribution of X .graph the density histogram of the sample and compare it with the density function f(x)arrow_forwardusing r language a continuous random variable X has density function f(x)=1/4x^3e^-(pi/2)^4,x>=0 derive the probability inverse transformation F^(-1)x where F(x) is the cdf of the random variable Xarrow_forwardusing r language in an accelerated failure test, components are operated under extreme conditions so that a substantial number will fail in a rather short time. in such a test involving two types of microships 600 chips manufactured by an existing process were tested and 125 of them failed then 800 chips manufactured by a new process were tested and 130 of them failed what is the 90%confidence interval for the difference between the proportions of failure for chips manufactured by two processes? using r languagearrow_forward
- I want a picture of the tools and the pictures used Cisco Packet Tracer Smart Home Automation:o Connect a temperature sensor and a fan to a home gateway.o Configure the home gateway so that the fan is activated when the temperature exceedsa set threshold (e.g., 30°C).2. WiFi Network Configuration:o Set up a wireless LAN with a unique SSID.o Enable WPA2 encryption to secure the WiFi network.o Implement MAC address filtering to allow only specific clients to connect.3. WLC Configuration:o Deploy at least two wireless access points connected to a Wireless LAN Controller(WLC).o Configure the WLC to manage the APs, broadcast the configured SSID, and applyconsistent security settings across all APs.arrow_forwardA. What will be printed executing the code above?B. What is the simplest way to set a variable of the class Full_Date to January 26 2020?C. Are there any empty constructors in this class Full_Date?a. If there is(are) in which code line(s)?b. If there is not, how would an empty constructor be? (create the code lines for it)D. Can the command std::cout << d1.m << std::endl; be included after line 28 withoutcausing an error?a. If it can, what will be printed?b. If it cannot, how could this command be fixed?arrow_forwardCisco Packet Tracer Smart Home Automation:o Connect a temperature sensor and a fan to a home gateway.o Configure the home gateway so that the fan is activated when the temperature exceedsa set threshold (e.g., 30°C).2. WiFi Network Configuration:o Set up a wireless LAN with a unique SSID.o Enable WPA2 encryption to secure the WiFi network.o Implement MAC address filtering to allow only specific clients to connect.3. WLC Configuration:o Deploy at least two wireless access points connected to a Wireless LAN Controller(WLC).o Configure the WLC to manage the APs, broadcast the configured SSID, and applyconsistent security settings across all APs.arrow_forward
- Transform the TM below that accepts words over the alphabet Σ= {a, b} with an even number of a's and b's in order that the output tape head is positioned over the first letter of the input, if the word is accepted, and all letters a should be replaced by the letter x. For example, for the input aabbaa the tape and head at the end should be: [x]xbbxx z/z,R b/b,R F ① a/a,R b/b,R a/a, R a/a,R b/b.R K a/a,R L b/b,Rarrow_forwardGiven the C++ code below, create a TM that performs the same operation, i.e., given an input over the alphabet Σ= {a, b} it prints the number of letters b in binary. 1 #include 2 #include 3 4- int main() { std::cout > str; for (char c : str) { if (c == 'b') count++; 5 std::string str; 6 int count = 0; 7 char buffer [1000]; 8 9 10 11- 12 13 14 } 15 16- 17 18 19 } 20 21 22} std::string binary while (count > 0) { binary = std::to_string(count % 2) + binary; count /= 2; std::cout << binary << std::endl; return 0;arrow_forwardConsidering the CFG described below, answer the following questions. Σ = {a, b} • NT = {S} Productions: P1 S⇒aSa P2 P3 SbSb S⇒ a P4 S⇒ b A. List one sequence of productions that can accept the word abaaaba; B. Give three 5-letter words that can be accepted by this CFG; C. Create a Pushdown automaton capable of accepting the language accepted by this CFG.arrow_forward
- Systems ArchitectureComputer ScienceISBN:9781305080195Author:Stephen D. BurdPublisher:Cengage LearningC++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology PtrMicrosoft Visual C#Computer ScienceISBN:9781337102100Author:Joyce, Farrell.Publisher:Cengage Learning,
- C++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningOperations Research : Applications and AlgorithmsComputer ScienceISBN:9780534380588Author:Wayne L. WinstonPublisher:Brooks ColeProgramming Logic & Design ComprehensiveComputer ScienceISBN:9781337669405Author:FARRELLPublisher:Cengage




