![Chemistry [hardcover]](https://www.bartleby.com/isbn_cover_images/9780393264845/9780393264845_largeCoverImage.gif)
Concept explainers
(a)
Interpretation: The diatomic molecule whose bond order increases with the loss of two electrons is to be found from the given molecules.
Concept introduction: When two atomic orbitals come close to each other they lose their identity and form new pair of orbitals knows as molecular orbitals. Among the two molecular orbitals formed one has energy lower than the atomic orbitals is known as bonding molecular orbital and the other has energy higher than the atomic orbitals and is known as antibonding molecular orbital. The filling electrons in molecular orbitals follow Aufbau’s principle and Hund’s rule.
To determine: If the bond order of diatomic molecule
(a)

Answer to Problem 9.110QP
Solution
The bond order of
Explanation of Solution
Explanation
The electronic configuration of
The bond order for
The number of bonding electrons in
The number of antibonding electrons in
Substitute the value of number of electrons in bonding and antibonding orbitals in
The bond order of
The
The bond order of
The number of bonding electrons in
The number of antibonding electrons in
Substitute the value of number of electrons in bonding and antibonding orbitals in
The bond order of
Hence, the bond order of
(b)
To determine: If the bond order of diatomic molecule
(b)

Answer to Problem 9.110QP
Solution
The bond order of
Explanation of Solution
Explanation
The electronic configuration of
The bond order for
The number of bonding electrons in
The number of antibonding electrons in
Substitute the value of number of electrons in bonding and antibonding orbitals in
The bond order of
The
The bond order for
The number of bonding electrons in
The number of antibonding electrons in
Substitute the value of number of electrons in bonding and antibonding orbitals in
The bond order of
Hence, the bond order of
(c)
To determine: If the bond order of diatomic molecule
(c)

Answer to Problem 9.110QP
Solution
The bond order of
Explanation of Solution
Explanation
The electronic configuration of
The bond order for
The number of bonding electrons in
The number of antibonding electrons in
Substitute the value of number of electrons in bonding and antibonding orbitals in
The bond order of
The
The bond order for
The number of bonding electrons in
The number of antibonding electrons in
Substitute the value of number of electrons in bonding and antibonding orbitals in
The bond order of
Hence, the bond order of
(d)
To determine: The bond order of diatomic molecule
(d)

Answer to Problem 9.110QP
Solution
The bond order of
Explanation of Solution
Explanation
The electronic configuration of
The bond order for
The number of bonding electrons in
The number of antibonding electrons in
Substitute the value of number of electrons in bonding and antibonding orbitals in
The bond order of
he
The bond order for
The number of bonding electrons in
The number of antibonding electrons in
Substitute the value of number of electrons in bonding and antibonding orbitals in
The bond order of
Hence, the bond order of
Conclusion
Higher the bond order of a molecule higher will be its bond strength. The bond order of oxygen increases while as the bond order of boron, carbon and nitrogen molecules decreases with the loss of two electrons.
Want to see more full solutions like this?
Chapter 9 Solutions
Chemistry [hardcover]
- A covalent bond is the result of the a) b) c) d) e) overlap of two half-filled s orbitals overlap of a half-filled s orbital and a half-filled p orbital overlap of two half-filled p orbitals along their axes parallel overlap of two half-filled parallel p orbitals all of the abovearrow_forwardCan the target compound at right be efficiently synthesized in good yield from the unsubstituted benzene at left? starting material target If so, draw a synthesis below. If no synthesis using reagents ALEKS recognizes is possible, check the box under the drawing area. Be sure you follow the standard ALEKS rules for submitting syntheses. + More... Note for advanced students: you may assume that you are using a large excess of benzene as your starting material. C T Add/Remove step X ноarrow_forwardWhich one of the following atoms should have the largest electron affinity? a) b) c) d) 으으 e) 1s² 2s² 2p6 3s¹ 1s² 2s² 2p5 1s² 2s² 2p 3s² 3p² 1s² 2s 2p 3s² 3p6 4s2 3ds 1s² 2s² 2p6arrow_forward
- All of the following are allowed energy levels except _. a) 3f b) 1s c) 3d d) 5p e) 6sarrow_forwardA student wants to make the following product in good yield from a single transformation step, starting from benzene. Add any organic reagents the student is missing on the left-hand side of the arrow, and any addition reagents that are necessary above or below the arrow. If this product can't be made in good yield with a single transformation step, check the box below the drawing area. Note for advanced students: you may assume that an excess of benzene is used as part of the reaction conditions. : ☐ + I X This product can't be made in a single transformation step.arrow_forwardPredict the major products of this organic reaction:arrow_forward
- Name the family to which each organic compound belongs. The first answer has been filled in for you. compound CH₂ || CH3-C-NH2 0 ။ CH3-C-CH₂ CH=O–CH=CH, CH₂ HO CH2-CH2-CH-CH3 family amine Darrow_forward1b. Br LOHarrow_forwardI would like my graphs checked please. Do they look right? Do I have iodine and persulfate on the right axis ?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





