Smartwork5 Printed Access Card for Use with Chemistry: The Science in Context 5th Edition (SmartWork Access Printed Access Card)
Smartwork5 Printed Access Card for Use with Chemistry: The Science in Context 5th Edition (SmartWork Access Printed Access Card)
5th Edition
ISBN: 9780393615296
Author: Rein V. Kirss (Author), Natalie Foster (Author), Geoffrey Davies (Author) Thomas R. Gilbert (Author)
Publisher: W. W. Norton
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 9, Problem 9.109QP

(a)

Interpretation Introduction

Interpretation: The diatomic molecule whose bond order increases with the addition of two electrons is to be found from the given molecules.

Concept introduction: When two atomic orbitals come close to each other they lose their identity and form new pair of orbitals knows as molecular orbitals. Among the two molecular orbitals formed one has energy lower than the atomic orbitals is known as bonding molecular orbital and the other has energy higher than the atomic orbitals and is known as antibonding molecular orbital. The filling electrons in molecular orbitals follow Aufbau’s principle and hund’s rule.

To determine: If the bond order of B2 increases after the gain of two electrons.

(a)

Expert Solution
Check Mark

Answer to Problem 9.109QP

Solution

The bond order of B2 increases after the gain of two electrons.

Explanation of Solution

Explanation

The electronic configuration of B2 is,

2s)2*2s)22p)2

The bond order for B2 is calculated by using formula,

BondorderofB2=12(NumberofbondingelectronsinB2NumberofofantibondongelctronsinB2)

The number of bonding electrons in B2=4

The number of antibonding electrons in B2=2

Substitute the value of number of electrons in bonding and antibonding orbitals in B2 in the above equation.

Bondorder=12(42)=1

The bond order of B2=1

The B22- ion is formed when two electrons are added to B2 . The electronic configuration of B22- is,

2s)2*2s)22p)4

The bond order for B22- is calculated by using formula,

BondorderofB22-=12(NumberofbondingelectronsinB22NumberofofantibondongelctronsinB22)

The number of bonding electrons in B22=6

The number of antibonding electrons in B22=2

Substitute the value of number of electrons in bonding and antibonding orbitals in B22- in the above equation.

Bondorder=12(62)=2

The bond order of B22-=2 .

Hence, the bond order of B2 molecule increases with the addition of two electrons.

(b)

Interpretation Introduction

To determine: If the bond order of C2 increase after the gain of two electrons.

(b)

Expert Solution
Check Mark

Answer to Problem 9.109QP

Solution

The bond order of C2 increases after the gain of two electrons.

Explanation of Solution

Explanation

The electronic configuration of C2 is,

2s)2*2s)22p)4

The bond order for C2 is calculated by using formula,

BondorderofC2=12(NumberofbondingelectronsinC2NumberofofantibondongelctronsinC2)

The number of bonding electrons in C2=6 .

The number of antibonding electrons in C2=2

Substitute the value of number of electrons in bonding and antibonding orbitals in C2 in the above equation.

Bondorder=12(62)=2

The bond order of C2=2

The C22 ion is formed when two electrons are added to C2 . The electronic configuration of C22 is,

2s)2*2s)22p)42p)2

The bond order for C22 is calculated by using formula,

BondorderofC22=12(NumberofbondingelectronsinC22NumberofofantibondongelctronsinC22-)

The number of bonding electrons in C22=8

The number of antibonding electrons in C22=2

Substitute the value of number of electrons in bonding and antibonding orbitals in C22 in the above equation.

Bondorder=12(82)=3

The bond order of C22=3

Hence, the bond order of C2 molecule increases with the addition of two electrons.

(c)

Interpretation Introduction

To determine: If the bond order of N2 increase after the gain of two electrons.

(c)

Expert Solution
Check Mark

Answer to Problem 9.109QP

Solution

The bond order of N2 decreases after the gain of two electrons.

Explanation of Solution

Explanation

The electronic configuration of N2 is,

2s)2*2s)22p)42p)2

The bond order for N2 is calculated by using formula,

BondorderofN2=12(NumberofbondingelectronsinN2NumberofofantibondongelctronsinN2)

The number of bonding electrons in N2=8 .

The number of antibonding electrons in N2=2

Substitute the value of number of electrons in bonding and antibonding orbitals in N2 in the above equation.

Bondorder=12(82)=3

The bond order of N2=3

The N22 ion is formed when two electrons are added to N2 . The electronic configuration of N22 is,

2s)2*2s)22p)42p)22p*)2

The bond order for N22 is calculated by using formula,

BondorderofN22=12(NumberofbondingelectronsofN22NumberofofantibondongelctronsinN22)

The number of bonding electrons in N22=8

The number of antibonding electrons in N22=4

Substitute the value of number of electrons in bonding and antibonding orbitals in N22 in the above equation.

Bondorder=12(84)=2

The bond order of N22=2 .

Hence, the bond order of N2 molecule decreases with the addition of two electrons.

(d)

Interpretation Introduction

To determine: If the bond order of O2  increases after the gain of two electrons.

(d)

Expert Solution
Check Mark

Answer to Problem 9.109QP

Solution

The bond order of O2 decreases after the gain of two electrons.

Explanation of Solution

Explanation

The electronic configuration of O2 is,

2s)2*2s)22p)22p)42p*)2

The bond order for O2 is calculated by using formula,

BondorderofO2=12(NumberofbondingelectronsinO2NumberofofantibondongelctronsinO2)

The number of bonding electrons in O2=8

The number of antibonding electrons in O2=4

Substitute the value of number of electrons in bonding and antibonding orbitals in O2 in the above equation.

Bondorder=12(84)=2

The bond order of O2=2

The O22 ion is formed when two electrons are added to O2 . The electronic configuration of O22 is,

2s)2*2s)22p)22p)42p*)4

The bond order for O22 is calculated by using formula,

Bondorderof O22=12(NumberofbondingelectronsofO22NumberofofantibondongelctronsinO22)

The number of bonding electrons in O22=8 .

The number of antibonding electrons in O22=6 .

Substitute the value of number of electrons in bonding and antibonding orbitals in O22 in the above equation.

Bondorder=12(86)=1

The bond order of O22=1 .

Hence, the bond order of O2 molecule decreases with the addition of two electrons.

Conclusion

Higher the bond order of a molecule higher will be its bond strength. The bond order of boron and carbon increases, whereas the bond order of nitrogen and oxygen decreases on the addition of two electrons.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
14.39 Draw the structure of each compound. a. (Z)-penta-1,3-diene in the s-trans conformation b. (2E,4Z)-1-bromo-3-methylhexa-2,4-diene c. (2E,4E,6E)-octa-2,4,6-triene d. (2E,4E)-3-methylhexa-2,4-diene in the s-cis conformation
PLEASE ANSWER ALL PARTS!!
pls help on all, inlcude all steps.

Chapter 9 Solutions

Smartwork5 Printed Access Card for Use with Chemistry: The Science in Context 5th Edition (SmartWork Access Printed Access Card)

Ch. 9.7 - Prob. 11PECh. 9.7 - Prob. 12PECh. 9.7 - Prob. 13PECh. 9 - Prob. 9.1VPCh. 9 - Prob. 9.2VPCh. 9 - Prob. 9.3VPCh. 9 - Prob. 9.4VPCh. 9 - Prob. 9.5VPCh. 9 - Prob. 9.6VPCh. 9 - Prob. 9.7VPCh. 9 - Prob. 9.8VPCh. 9 - Prob. 9.9QPCh. 9 - Prob. 9.10QPCh. 9 - Prob. 9.11QPCh. 9 - Prob. 9.12QPCh. 9 - Prob. 9.13QPCh. 9 - Prob. 9.14QPCh. 9 - Prob. 9.15QPCh. 9 - Prob. 9.16QPCh. 9 - Prob. 9.17QPCh. 9 - Prob. 9.18QPCh. 9 - Prob. 9.19QPCh. 9 - Prob. 9.20QPCh. 9 - Prob. 9.21QPCh. 9 - Prob. 9.22QPCh. 9 - Prob. 9.23QPCh. 9 - Prob. 9.24QPCh. 9 - Prob. 9.25QPCh. 9 - Prob. 9.26QPCh. 9 - Prob. 9.27QPCh. 9 - Prob. 9.28QPCh. 9 - Prob. 9.29QPCh. 9 - Prob. 9.30QPCh. 9 - Prob. 9.31QPCh. 9 - Prob. 9.32QPCh. 9 - Prob. 9.33QPCh. 9 - Prob. 9.34QPCh. 9 - Prob. 9.35QPCh. 9 - Prob. 9.36QPCh. 9 - Prob. 9.37QPCh. 9 - Prob. 9.38QPCh. 9 - Prob. 9.39QPCh. 9 - Prob. 9.40QPCh. 9 - Prob. 9.41QPCh. 9 - Prob. 9.42QPCh. 9 - Prob. 9.43QPCh. 9 - Prob. 9.44QPCh. 9 - Prob. 9.45QPCh. 9 - Prob. 9.46QPCh. 9 - Prob. 9.47QPCh. 9 - Prob. 9.48QPCh. 9 - Prob. 9.49QPCh. 9 - Prob. 9.50QPCh. 9 - Prob. 9.51QPCh. 9 - Prob. 9.52QPCh. 9 - Prob. 9.53QPCh. 9 - Prob. 9.54QPCh. 9 - Prob. 9.55QPCh. 9 - Prob. 9.56QPCh. 9 - Prob. 9.57QPCh. 9 - Prob. 9.58QPCh. 9 - Prob. 9.59QPCh. 9 - Prob. 9.60QPCh. 9 - Prob. 9.61QPCh. 9 - Prob. 9.62QPCh. 9 - Prob. 9.63QPCh. 9 - Prob. 9.64QPCh. 9 - Prob. 9.65QPCh. 9 - Prob. 9.66QPCh. 9 - Prob. 9.67QPCh. 9 - Prob. 9.68QPCh. 9 - Prob. 9.69QPCh. 9 - Prob. 9.70QPCh. 9 - Prob. 9.71QPCh. 9 - Prob. 9.72QPCh. 9 - Prob. 9.73QPCh. 9 - Prob. 9.74QPCh. 9 - Prob. 9.75QPCh. 9 - Prob. 9.76QPCh. 9 - Prob. 9.77QPCh. 9 - Prob. 9.78QPCh. 9 - Prob. 9.79QPCh. 9 - Prob. 9.80QPCh. 9 - Prob. 9.81QPCh. 9 - Prob. 9.82QPCh. 9 - Prob. 9.83QPCh. 9 - Prob. 9.84QPCh. 9 - Prob. 9.85QPCh. 9 - Prob. 9.86QPCh. 9 - Prob. 9.87QPCh. 9 - Prob. 9.88QPCh. 9 - Prob. 9.89QPCh. 9 - Prob. 9.90QPCh. 9 - Prob. 9.91QPCh. 9 - Prob. 9.92QPCh. 9 - Prob. 9.93QPCh. 9 - Prob. 9.94QPCh. 9 - Prob. 9.95QPCh. 9 - Prob. 9.96QPCh. 9 - Prob. 9.97QPCh. 9 - Prob. 9.98QPCh. 9 - Prob. 9.99QPCh. 9 - Prob. 9.100QPCh. 9 - Prob. 9.101QPCh. 9 - Prob. 9.102QPCh. 9 - Prob. 9.103QPCh. 9 - Prob. 9.104QPCh. 9 - Prob. 9.105QPCh. 9 - Prob. 9.106QPCh. 9 - Prob. 9.107QPCh. 9 - Prob. 9.108QPCh. 9 - Prob. 9.109QPCh. 9 - Prob. 9.110QPCh. 9 - Prob. 9.111QPCh. 9 - Prob. 9.112QPCh. 9 - Prob. 9.113QPCh. 9 - Prob. 9.114QPCh. 9 - Prob. 9.115APCh. 9 - Prob. 9.116APCh. 9 - Prob. 9.117APCh. 9 - Prob. 9.118APCh. 9 - Prob. 9.119APCh. 9 - Prob. 9.120APCh. 9 - Prob. 9.121APCh. 9 - Prob. 9.122APCh. 9 - Prob. 9.123APCh. 9 - Prob. 9.124APCh. 9 - Prob. 9.125APCh. 9 - Prob. 9.126APCh. 9 - Prob. 9.127APCh. 9 - Prob. 9.128APCh. 9 - Prob. 9.129APCh. 9 - Prob. 9.130APCh. 9 - Prob. 9.131APCh. 9 - Prob. 9.132APCh. 9 - Prob. 9.133APCh. 9 - Prob. 9.134APCh. 9 - Prob. 9.135APCh. 9 - Prob. 9.136APCh. 9 - Prob. 9.137APCh. 9 - Prob. 9.138APCh. 9 - Prob. 9.139APCh. 9 - Prob. 9.140APCh. 9 - Prob. 9.141APCh. 9 - Prob. 9.142APCh. 9 - Prob. 9.143AP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
General Chemistry 1A. Lecture 12. Two Theories of Bonding.; Author: UCI Open;https://www.youtube.com/watch?v=dLTlL9Z1bh0;License: CC-BY