
Concept explainers
(a)
Interpretation: The diatomic molecule whose bond order increases with the addition of two electrons is to be found from the given molecules.
Concept introduction: When two atomic orbitals come close to each other they lose their identity and form new pair of orbitals knows as molecular orbitals. Among the two molecular orbitals formed one has energy lower than the atomic orbitals is known as bonding molecular orbital and the other has energy higher than the atomic orbitals and is known as antibonding molecular orbital. The filling electrons in molecular orbitals follow Aufbau’s principle and hund’s rule.
To determine: If the bond order of
(a)

Answer to Problem 9.109QP
Solution
The bond order of
Explanation of Solution
Explanation
The electronic configuration of
The bond order for
The number of bonding electrons in
The number of antibonding electrons in
Substitute the value of number of electrons in bonding and antibonding orbitals in
The bond order of
The
The bond order for
The number of bonding electrons in
The number of antibonding electrons in
Substitute the value of number of electrons in bonding and antibonding orbitals in
The bond order of
Hence, the bond order of
(b)
To determine: If the bond order of
(b)

Answer to Problem 9.109QP
Solution
The bond order of
Explanation of Solution
Explanation
The electronic configuration of
The bond order for
The number of bonding electrons in
The number of antibonding electrons in
Substitute the value of number of electrons in bonding and antibonding orbitals in
The bond order of
The
The bond order for
The number of bonding electrons in
The number of antibonding electrons in
Substitute the value of number of electrons in bonding and antibonding orbitals in
The bond order of
Hence, the bond order of
(c)
To determine: If the bond order of
(c)

Answer to Problem 9.109QP
Solution
The bond order of
Explanation of Solution
Explanation
The electronic configuration of
The bond order for
The number of bonding electrons in
The number of antibonding electrons in
Substitute the value of number of electrons in bonding and antibonding orbitals in
The bond order of
The
The bond order for
The number of bonding electrons in
The number of antibonding electrons in
Substitute the value of number of electrons in bonding and antibonding orbitals in
The bond order of
Hence, the bond order of
(d)
To determine: If the bond order of
(d)

Answer to Problem 9.109QP
Solution
The bond order of
Explanation of Solution
Explanation
The electronic configuration of
The bond order for
The number of bonding electrons in
The number of antibonding electrons in
Substitute the value of number of electrons in bonding and antibonding orbitals in
The bond order of
The
The bond order for
The number of bonding electrons in
The number of antibonding electrons in
Substitute the value of number of electrons in bonding and antibonding orbitals in
The bond order of
Hence, the bond order of
Conclusion
Higher the bond order of a molecule higher will be its bond strength. The bond order of boron and carbon increases, whereas the bond order of nitrogen and oxygen decreases on the addition of two electrons.
Want to see more full solutions like this?
Chapter 9 Solutions
Chemistry: The Science in Context (Fifth Edition)
- What is the final product when hexanedioic acid reacts with 1º PCl5 and 2º NH3.arrow_forwardWhat is the final product when D-galactose reacts with hydroxylamine?arrow_forwardIndicate the formula of the product obtained by reacting methyl 5-chloro-5-oxopentanoate with 1 mole of 4-penten-1-ylmagnesium bromide.arrow_forward
- The temperature on a sample of pure X held at 1.25 atm and -54. °C is increased until the sample boils. The temperature is then held constant and the pressure is decreased by 0.42 atm. On the phase diagram below draw a path that shows this set of changes. pressure (atm) 2 0 0 200 400 temperature (K) Xarrow_forwardQUESTION: Answer Question 5: 'Calculating standard error of regression' STEP 1 by filling in all the empty green boxes *The values are all provided in the photo attached*arrow_forwardpressure (atm) 3 The pressure on a sample of pure X held at 47. °C and 0.88 atm is increased until the sample condenses. The pressure is then held constant and the temperature is decreased by 82. °C. On the phase diagram below draw a path that shows this set of changes. 0 0 200 temperature (K) 400 аarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





