
Concept explainers
(a)
Interpretation: The molecular ions with one or more unpaired electron from the given molecules are to be identified.
Concept introduction: When two atomic orbitals come close to each other they lose their identity and form new pair of orbitals knows as molecular orbitals. Among the two molecular orbitals formed, one has energy lower than the atomic orbitals is known as bonding molecular orbital and the other has energy higher than the atomic orbitals and is known as antibonding molecular orbital. The filling electrons in molecular orbitals follow Aufbau’s principle and Hund’s rule.
To determine: If the molecular ion
(a)

Answer to Problem 9.105QP
Solution
The
Explanation of Solution
Explanation
Nitrogen has five valence electrons.
The total number of valence electrons in
According to the molecular orbital theory, the electronic configuration of
One unpaired electron is present in
(b)
To determine: If the molecular ion
(b)

Answer to Problem 9.105QP
Solution
The
Explanation of Solution
Explanation
Oxygen has six valence electrons.
The total number of valence electrons in
According to the molecular orbital theory the electronic configuration of
One unpaired electron is present in the
(c)
To determine: If the molecular ion
(c)

Answer to Problem 9.105QP
Solution
The
Explanation of Solution
Explanation
Carbon has four valence electrons.
The total number of valence electrons in
According to the molecular orbital theory the electronic configuration of
One unpaired electron is present in the
(d)
To determine: If the molecular ion
(d)

Answer to Problem 9.105QP
Solution
The
Explanation of Solution
Explanation
Bromine has seven valence electrons.
The total number of valence electrons in
According to the molecular orbital theory the electronic configuration of
No unpaired electron is present in any orbital of
(e)
To determine: If the molecular ion
(e)

Answer to Problem 9.105QP
Solution
The
Explanation of Solution
Explanation
Oxygen has six valence electrons.
The total number of valence electrons in
According to the molecular orbital theory the electronic configuration of
One unpaired electron is present in the
(f)
To determine: If the molecular ion
(f)

Answer to Problem 9.105QP
Solution
The
Explanation of Solution
Explanation
Oxygen has six valence electrons.
The total number of valence electrons in
According to the molecular orbital theory the electronic configuration of
No unpaired electron is present in any orbital of
(g)
To determine: If the molecular ion
(g)

Answer to Problem 9.105QP
Solution
The
Explanation of Solution
Explanation
Nitrogen has five valence electrons.
The total number of valence electrons in
According to the molecular orbital theory the electronic configuration of
Two unpaired electrons are present in
(h)
To determine: If the molecular ion
(h)

Answer to Problem 9.105QP
Solution
The
Explanation of Solution
Explanation
Fluorine has seven valence electrons.
The total number of valence electrons in
According to the molecular orbital theory the electronic configuration of
One unpaired electron is present in
Conclusion
The molecules which contain unpaired electrons in their molecular orbitals are paramagnetic in nature. All the molecular ion species except
Want to see more full solutions like this?
Chapter 9 Solutions
Chemistry: The Science in Context (Fifth Edition)
- 2. Draw the missing structure(s) in each of the following reactions. The missing structure(s) can be a starting material or the major reaction product(s). C5H10 H-CI CH2Cl2 CIarrow_forwardDraw the products of the stronger acid protonating the other reactant. དའི་སྐད”“ H3C OH H3C CH CH3 KEq Product acid Product basearrow_forwardDraw the products of the stronger acid protonating the other reactant. H3C NH2 NH2 KEq H3C-CH₂ 1. Product acid Product basearrow_forward
- What alkene or alkyne yields the following products after oxidative cleavage with ozone? Click the "draw structure" button to launch the drawing utility. draw structure ... andarrow_forwardDraw the products of the stronger acid protonating the other reactant. H3C-C=C-4 NH2 KEq CH H3C `CH3 Product acid Product basearrow_forward2. Draw the missing structure(s) in each of the following reactions. The missing structure(s) can be a starting material or the major reaction product(s). C5H10 Br H-Br CH2Cl2 + enant.arrow_forward
- Draw the products of the stronger acid protonating the other reactant. KEq H₂C-O-H H3C OH Product acid Product basearrow_forwardDraw the products of the stronger acid protonating the other reactant. OH KEq CH H3C H3C `CH3 Product acid Product basearrow_forward2. Draw the missing structure(s) in each of the following reactions. The missing structure(s) can be a starting material or the major reaction product(s). Ph H-I CH2Cl2arrow_forward
- 3 attempts left Check my work Draw the products formed in the following oxidative cleavage. [1] 03 [2] H₂O draw structure ... lower mass product draw structure ... higher mass productarrow_forward2. Draw the missing structure(s) in each of the following reactions. The missing structure(s) can be a starting material or the major reaction product(s). H-Br CH2Cl2arrow_forwardWrite the aldol condensation mechanism and product for benzaldehyde + cyclohexanone in a base. Then trans-cinnamaldehyde + acetone in base. Then, trans-cinnamaldehyde + cyclohexanone in a base.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





