
Concept explainers
The number of additional lanes required in each direction.

Answer to Problem 8P
The number of additional lanes required to maintain the level of service B is four.
Explanation of Solution
Given:
Length of the segment is
Sustained grade is
Design volume is
Percentage of trucks is
Percentage of buses is
Percentage of RV's is
Percent hour factor is
Free flow speed is
Right side lateral obstruction is
Design LOS is
Formula used:
Write the expression to calculate the
Here,
Find the number of lanes in each direction using the following relation.
Here,
Calculate the free flow speed by using the formula.
Here,
Write the expression to calculate the speed.
Here,
Write the expression to calculate the density using the formula.
Here,
Calculation:
Refer table 9.26, "PCE's for trucks and buses on upgrades, multilane highways and basic freeway sections".
The value of passenger car equivalent for trucks
The value of passenger car equivalent for recreational vehicles is
Substitute
Consider the driver population factor as
Consider
Substitute
Consider
Substitute
Consider
Substitute
Refer table 9.29, "Adjustment for lane width".
The value of
Refer table 9.30, "Adjustment for right shoulder lateral clearance".
At the right side lateral clearance, the value of reduction in free flow speed
For two lanes the value is
For three lanes the value is
For four lanes the value is
Refer table 9.31, "Adjustment for number of lanes" for the value of
For two lanes the value is
For three lanes the value is
For four lanes the value is
Refer table 9.32, "Adjustment for interchange density" for the value of
The value is
Consider
Substitute
Substitute
Substitute
Refer table 9.33, "Level of service criteria for multilane highways".
The level of service is D.
Consider
Substitute
Substitute
Substitute
Refer table 9.33, "Level of service criteria for multilane highways".
The level of service is C.
Consider
Substitute
Substitute
Substitute
Refer table 9.33, "Level of service criteria for multilane highways".
The level of service is B.
Conclusion:
Therefore, the number of additional lanes required to maintain the level of service B is four.
Want to see more full solutions like this?
Chapter 9 Solutions
Traffic And Highway Engineering
- A 1.8m x 1.8m footing is located at a depth of 1 m below the ground surface in a deep deposit of compacted sand (f'= 33 , f' = 28 , γ = 17.5 kN/m). Calculate the ultimate net bearing capacity considering several factors (e.g., shape, depth, and inclination) when the groundwater table is located (a) at 5 m below the footing base, (b) at the ground surface, (c) at the footing base, and (d) at 1.5 m below the footing base. Also, explain the effects of the groundwater levels in the bearing capacities of the footing with your own words. If the information is not given for the calculation, please assume it reasonably.arrow_forward7.18 Determine the discharge in the pipe and the pressure at point B. Neglect head losses. Assume α = 1.0 at all locations. 1.5 m Water B 3.5 m 40 cm diameter -20 cm diameter nozzle Problem 7.18arrow_forwardA 200-lb block is at rest on a 30° inclined plane. The coefficient of friction between the block and the inclined plane is 0.20. Compute the value of a horizontal force P that will cause motion to impend the block up the inclined plane. 200 lb P 30°arrow_forward
- Please explain step by steparrow_forwardProblem 1 = = = 13,600 Manometers can be used in combination with cardiovascular catheters to measure blood pressure based on height differences. In the example in Figure 1, the manometer contains two fluids: water (density p 995 Kg/m³) and mercury (density pm Kg/m³). The density of blood is p 1,060 Kg/m³. Assume that there is atmospheric pressure at the interface between mercury and air. The interface between mercury and water is at z₁ = 7 cm, the interface between water and blood is at Z2 27 cm, and the tip of the manometer at za 10 cm. Recall that the fluid statics equation is dp/dz-pg 0, when the z axis is taken pointing downwards. a. What is the gauge pressure po at the interface with air, in mmHg? (5 points) b. Calculate the gauge pressure ps at the tip of the manometer, in mmHg. (5 points) N Z37 blood ப Zz Water Mercury Zo 3=0 z Figure 1. Manometer for blood pressure measurement.arrow_forwardDetermine the following for the beam with unknown loading, using the Shear and Bending Diagrams provided in the figures on the right: a. The maximum shear stress experienced by the beam. b. The maximum flexural stress experienced by the beam (Indicate if this is tensile or compressive flexural stress) c. The loading diagram (Indicate the magnitudes of the loading/s. The loads are acting along the plane of symmetry of the section) 20 80 20 十十 SHEAR DIAGRAM x=577.3502692 mm 20 KN 1° 5/3 KN 2° C 2° D A B CROSS SECTION Dimensions are in mm LOADING DIAGRAM ? 120 40 40 A B C D 1000mm 2000mm 1000mm -55/3 KN MB' C D BENDING DIAGRAM MB A B Σ Mcarrow_forward
- Find the maximum bending stress in ksi for this beam if it is made from a W16x50 steel shape. If the steel yields at 50 ksi, will the beam support the loads shown without permanently deforming? Confirm the max moment in the beam by drawing the shear and moment diagram. 18 kip-ft 2 kip/ft 9 ftarrow_forwardProblem 4 A propped cantilever beam of flexural rigidity EI and 2EI for parts 1-2 and 2-3, respectively, is subjected to a concentrated load P at point 2. Find: a) Determine the displacement at point 2; b) Determine the rotation at point 3; c) Determine the reaction force and moment at point 1; d) Determine the reaction force at point 3. El 2 P 2 EI 2 Larrow_forwardProblem 3 15 A W150 x 37 rolled-steel beam is used below. Let P150 kN, L-10 m and E 200 GPa. Find the deflection and slope at each node and each pin or wall reaction. If a software program such Maple or MATLAB issued as part of the solution, a hard copy of the code must be submitted too. 1/2 1/2arrow_forward
- 1. Determine the bearings, azimuths, and lengths of lines AB, BC, CD, and DA for the closed loop traverse data shown below in Table 1. Show calculations. Table 1 Station Northing [ft] Easting [ft] A 1,000 1,000 B 750 1,750 C 1,345 2,255 D 1,567 1,345 2. Compute the bearings of sides BC and CD in Figure 1. Show all work for all angles. A B 70°10' S72°39'W C 94°35' Figure 1 Tt (+) B Darrow_forwardhoph - AT 10x AT 10.076 ht 0.076 0 0-1846112 14884 xh T 1.632m h-4- (1-22) h = 1.022m 14. The 4-ft-diameter cylinder, 4 ft long, is acted upon by water on the left and oil of sp gr 0.800 on the right. Determine (a) the normal force at B if the cylinder weighs 4000 lb and (b) the horizontal force due to oil and water if the oil level drops 1 ft. Solution Water Oil Barrow_forward3. The following data was collected for the traverse shown in Figure 2. a. Determine the latitudes and departures for all sides. b. Determine the linear error of closure and the accuracy ratio. C. Correct and balance the latitudes and departures. A N80°27'E 467.81 ft 497.50 ft N56°46' W B S34°51'E 483.69 ft 325.06 ft D N81°48' Warrow_forward
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning
