Concept explainers
The traffic characteristics with each of the levels of service for primary freeway sections.
Explanation of Solution
Introduction:
Level of service is a qualitative method which is used to describe the operating conditions of a given freeway segment. This method uses density as the variable and alphabetic grading system raging between A to F.
There is 6 basic level of service, which is described below.
- Level of service A.
- Level of service B.
- Level of service C.
- Level of service D.
- Level of service E.
- Level of service F There is a complete blockage in the traffic flow.
The vehicles move freely within the traffic stream without any interruption. Effect of incidents or point breakdown is easily absorbed.
Traffic moves under reasonably free flow condition with minimum restrictions. Effect of incidents or point breakdown is easily absorbed.
The speed of the vehicles is almost equal to free flow speed, but the free flow of the vehicles is constrained. The driver has to be cautious while shifting lanes. Small incidents are absorbed but large incidents direct to queuing of vehicles.
In the traffic stream, the free movement of vehicles is very much restricted, and there is no level of comfort. Even a minor incident leads to queuing of vehicles.
There are no good gaps between the vehicles, and the operations are unbalanced. The entry of vehicles from ramps or sub-lane leads to a blockage in the traffic flow.
Conclusion:
There are six levels of service which are represented alphabetically from A to F. Level of service A being the ideal for driving with decreasing free flow and level of service F being congested.
Want to see more full solutions like this?
Chapter 9 Solutions
Traffic And Highway Engineering
- Please solve with stepsarrow_forwardQ.2 a. Determine the net area along route ABCDEF for C15x33.9(Ag=10in2) as shown in Fig. Holes are for %- in bolts. b. compute the design strength if A36 is used 0.650 in 14in 3in 0.400 in 9 in C15 x 33.9 3 in 14 in 2 in 0.650 in (b) (c) 141 3+2-040arrow_forwarda. Determine the net area of the W12x16(Ag=4.71in2) shown in Fig. Assuming that the holes are for 1-in bolts. b. compute the design strength if A36 is used W12 x 16 d-12.00 in -0.220 in 3 in HE -by-3.99 in 3 in 3 in DO 2 in 2 inarrow_forward
- a. Determine the net area of the W12x16(Ag=4.71in2) shown in Fig. Assuming that the holes are for 1-in bolts. b. compute the design strength if A36 is used W12 x 16 d-12.00 in 4-0.220 in 3 in 3 in BO HO by-3.99 in 3 in 3 in DO E 2 in 2 inarrow_forward止 Q.1 Using the lightest W section shape to design the compression member AB shown in Fig. below, the concentrated service dead load and live load is PD-40kips and PL 150kips respectively. The beams and columns are oriented about the major axis and the columns are braced at each story level for out-of-plan buckling. Assume that the same section is used for columns. Use Fy-50 ksi. 32456 Aarrow_forward02. Design a W shape beam is used to support the loads for plastered floor, shown in Figure. Lateral bracing is supplied only at the ends. Depend LRFD and Steel Fy=50ksi. Note: The solution includes compute C, Check deflection at center of beam as well as shear capacity) B P10.5 P=140 W C Hing Hing 159 A 15.ftarrow_forward
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning