The value of k if 94 % of the technetium has decayed after 24 hours (that is, 6 % remains) when the amount of 99 m Tc decays exponentially according to the model Q t = Q 0 e − k t .
The value of k if 94 % of the technetium has decayed after 24 hours (that is, 6 % remains) when the amount of 99 m Tc decays exponentially according to the model Q t = Q 0 e − k t .
Solution Summary: The author explains how 99mTc decays exponentially according to the model Q(t)=Q_0e-kt.
To determine: The value of k if 94% of the technetium has decayed after 24 hours (that is, 6% remains) when the amount of 99mTc decays exponentially according to the model Qt=Q0e−kt .
(b)
To determine
To determine: The amount remaining after 10 hours if 30 mCi is initially given to a patient for blood pool imaging of the heart when the amount of 99mTc decays exponentially according to the model Qt=Q0e−kt .
(c)
To determine
To determine: The amount of time required for the amount of 99mTc to fall below 1% of the original amount when the amount of 99mTc decays exponentially according to the model Qt=Q0e−kt .
Only 100% sure experts solve it correct complete solutions ok
rmine the immediate settlement for points A and B shown in
figure below knowing that Aq,-200kN/m², E-20000kN/m², u=0.5, Depth
of foundation (DF-0), thickness of layer below footing (H)=20m.
4m
B
2m
2m
A
2m
+
2m
4m
sy = f(x)
+
+
+
+
+
+
+
+
+
X
3
4
5
7
8
9
The function of shown in the figure is continuous on the closed interval [0, 9] and differentiable on the open
interval (0, 9). Which of the following points satisfies conclusions of both the Intermediate Value Theorem
and the Mean Value Theorem for f on the closed interval [0, 9] ?
(A
A
B
B
C
D
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY