PHY F/SCIENTIST MOD MASTERING 24 MO
17th Edition
ISBN: 9780137319497
Author: Knight
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 7CQ
7. A particle moves in a vertical plane along the closed path seen in Figure Q9.7, starting at A and eventually returning to its starting point. Is the work done by gravity positive, negative, or zero? Explain.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
No chatgpt pls will upvote
4.) The diagram shows the electric field lines of a positively charged conducting sphere of
radius R and charge Q.
A
B
Points A and B are located on the same field line.
A proton is placed at A and released from rest. The magnitude of the work done by the electric field in
moving the proton from A to B is 1.7×10-16 J. Point A is at a distance of 5.0×10-2m from the centre of
the sphere. Point B is at a distance of 1.0×10-1 m from the centre of the sphere.
(a) Explain why the electric potential decreases from A to B. [2]
(b) Draw, on the axes, the variation of electric potential V with distance r from the centre of the
sphere.
R
[2]
(c(i)) Calculate the electric potential difference between points A and B. [1]
(c(ii)) Determine the charge Q of the sphere. [2]
(d) The concept of potential is also used in the context of gravitational fields. Suggest why scientists
developed a common terminology to describe different types of fields. [1]
3.) The graph shows how current I varies with potential difference V across a component X.
904
80-
70-
60-
50-
I/MA
40-
30-
20-
10-
0+
0
0.5
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
VIV
Component X and a cell of negligible internal resistance are placed in a circuit.
A variable resistor R is connected in series with component X. The ammeter reads 20mA.
4.0V
4.0V
Component X and the cell are now placed in a potential divider circuit.
(a) Outline why component X is considered non-ohmic. [1]
(b(i)) Determine the resistance of the variable resistor. [3]
(b(ii)) Calculate the power dissipated in the circuit. [1]
(c(i)) State the range of current that the ammeter can measure as the slider S of the potential divider
is moved from Q to P. [1]
(c(ii)) Describe, by reference to your answer for (c)(i), the advantage of the potential divider
arrangement over the arrangement in (b).
Chapter 9 Solutions
PHY F/SCIENTIST MOD MASTERING 24 MO
Ch. 9 - If a particle’s speed increases by a factor of 3,...Ch. 9 - Prob. 2CQCh. 9 - 3. An elevator held by a single cable is ascending...Ch. 9 - The rope in FIGURE Q9.4 pulls the box to the left...Ch. 9 - 5. A 0.2 kg plastic cart and a 20 kg lead cart...Ch. 9 - A particle moving to the left is slowed by a force...Ch. 9 - 7. A particle moves in a vertical plane along the...Ch. 9 - 8. You need to raise a heavy block by pulling it...Ch. 9 - 9. A ball on a string travels once around a circle...Ch. 9 - A sprinter accelerates from rest. Is the work done...
Ch. 9 - 11. A Spring has an unstretched length of 10cm. It...Ch. 9 - 12. The left end of a spring is attached to a...Ch. 9 - The driver of a car traveling at 60 mph slams on...Ch. 9 - Prob. 14CQCh. 9 - Which has the larger kinetic energy, a 10 g bullet...Ch. 9 - At what speed does a 1000 kg compact car have the...Ch. 9 - 3. A mother has four times the mass of her young...Ch. 9 - 4. A horizontal rope with 15 N tension drags a 25...Ch. 9 - 5. A 25 kg box sliding to the left across a...Ch. 9 - A 2.0 kg book is lying on a 0.75-m-high table. You...Ch. 9 - Prob. 7EAPCh. 9 - Prob. 8EAPCh. 9 - 9. You throw a 5.5 g coin straight down at 4.0 m/s...Ch. 9 - Prob. 10EAPCh. 9 - 12. Evaluate the dot product if
and .
and .
Ch. 9 - 12. Evaluate the dot product if
and .
and .
Ch. 9 - 13. What is the angle ? between vectors and in...Ch. 9 - Prob. 14EAPCh. 9 - Prob. 15EAPCh. 9 - 16. A 25 kg air compressor is dragged up a rough...Ch. 9 - Prob. 17EAPCh. 9 - The two ropes seen in FIGURE EX9.18 are used to...Ch. 9 - 19. The three ropes shown in the bird’s-eye view...Ch. 9 - Prob. 20EAPCh. 9 - Prob. 21EAPCh. 9 - Prob. 22EAPCh. 9 - A particle moving on the x-axis experiences a...Ch. 9 - Prob. 24EAPCh. 9 - A horizontal spring with spring constant 750 N/m...Ch. 9 - 26. A 35-cm-long vertical spring has one end fixed...Ch. 9 - A 10-cm-long spring is attached to the ceiling....Ch. 9 - A 60 kg student is standing atop a spring in an...Ch. 9 -
29. A 5.0 kg mass hanging from a spring scale is...Ch. 9 - A horizontal spring with spring constant 85 N/m...Ch. 9 - 31. One mole (6.02 × 1023 atoms) of helium atoms...Ch. 9 - 32. A 55 kg softball player slides into second...Ch. 9 - A baggage handler throws a 15 kg suitcase along...Ch. 9 -
34. An 8.0 kg crate is pulled 5.0 m up a 30°...Ch. 9 - Justin, with a mass of 30 kg, is going down an...Ch. 9 - Prob. 36EAPCh. 9 - Prob. 37EAPCh. 9 - 38. How much energy is consumed by (a) a 1.2 kW...Ch. 9 - 39. At midday, solar energy strikes the earth with...Ch. 9 - Prob. 40EAPCh. 9 - Prob. 41EAPCh. 9 - Prob. 42EAPCh. 9 - 43. A 1000 kg elevator accelerates upward at 1.0...Ch. 9 - 44. a. Starting from rest, a crate of mass m is...Ch. 9 - Prob. 45EAPCh. 9 - 46. A particle of mass m moving along the x-axis...Ch. 9 -
47. A ball shot straight up with kinetic energy...Ch. 9 - 48. A pile driver lifts a 250 kg weight and then...Ch. 9 - Prob. 49EAPCh. 9 -
50. You’re fishing from a tall pier and have...Ch. 9 - Hook’s law describes an ideal spring. Many real...Ch. 9 -
52. The force acting on a particle is Fx =...Ch. 9 - 53. The gravitational attraction between two...Ch. 9 -
54. An electric dipole consists of two equal...Ch. 9 - Prob. 55EAPCh. 9 -
56. When a 65 kg cheerleader stands on a...Ch. 9 - Prob. 57EAPCh. 9 - Prob. 58EAPCh. 9 -
59. A horizontal spring with spring constant 250...Ch. 9 - 60. A 90 kg firefighter needs to climb the stairs...Ch. 9 - Prob. 61EAPCh. 9 - 62. When you ride a bicycle at constant speed,...Ch. 9 -
63. A farmer uses a tractor to pull a 150 kg...Ch. 9 - Prob. 64EAPCh. 9 - Prob. 65EAPCh. 9 - Prob. 66EAPCh. 9 - In problems 67 through 69 you are given the...Ch. 9 - Prob. 68EAPCh. 9 - Prob. 69EAPCh. 9 - Prob. 70EAPCh. 9 - Prob. 71EAPCh. 9 - Prob. 72EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 1.) Two long parallel current-carrying wires P and Q are separated by 0.10 m. The current in wire P is 5.0 A. The magnetic force on a length of 0.50 m of wire P due to the current in wire Q is 2.0 × 10-s N. (a) State and explain the magnitude of the force on a length of 0.50 m of wire Q due to the current in P. [2] (b) Calculate the current in wire Q. [2] (c) Another current-carrying wire R is placed parallel to wires P and Q and halfway between them as shown. wire P wire R wire Q 0.05 m 0.05 m The net magnetic force on wire Q is now zero. (c.i) State the direction of the current in R, relative to the current in P.[1] (c.ii) Deduce the current in R. [2]arrow_forward2.) A 50.0 resistor is connected to a cell of emf 3.00 V. The voltmeter and the ammeter in the circuit are ideal. V A 50.00 (a) The current in the ammeter is 59.0 mA. Calculate the internal resistance of the cell. The circuit is changed by connecting another resistor R in parallel to the 50.0 resistor. V A 50.00 R (b) Explain the effect of this change on R is made of a resistive wire of uniform cross-sectional area 3.1 × 10-8 m², resistivity 4.9 × 10-70m and length L. The resistance of R is given by the equation R = KL where k is a constant. (b.i) the reading of the ammeter. [2] (b.ii) the reading of the voltmeter. [2] (c) Calculate k. State an appropriate unit for your answer. [3] [2]arrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardA rod 12.0 cm long is uniformly charged and has a total charge of -20.0 μc. Determine the magnitude and direction of the electric field along the axis of the rod at a point 32.0 cm from its center. 361000 ☑ magnitude What is the general expression for the electric field along the axis of a uniform rod? N/C direction toward the rodarrow_forwardA certain brand of freezer is advertised to use 730 kW h of energy per year. Part A Assuming the freezer operates for 5 hours each day, how much power does it require while operating? Express your answer in watts. ΜΕ ΑΣΦ ? P Submit Request Answer Part B W If the freezer keeps its interior at a temperature of -6.0° C in a 20.0° C room, what is its theoretical maximum performance coefficient? Enter your answer numerically. K = ΜΕ ΑΣΦ Submit Request Answer Part C What is the theoretical maximum amount of ice this freezer could make in an hour, starting with water at 20.0°C? Express your answer in kilograms. m = Ο ΑΣΦ kgarrow_forward
- Describe the development of rational choice theory in sociology. Please includearrow_forwardA-E pleasearrow_forwardA 11.8 L gas tank containing 3.90 moles of ideal He gas at 26.0°C is placed inside a completely evacuated insulated bell jar of volume 39.0 L .A small hole in the tank allows the He to leak out into the jar until the gas reaches a final equilibrium state with no more leakage. Part A What is the change in entropy of this system due to the leaking of the gas? ■ ΜΕ ΑΣΦ AS = ? J/K Submit Request Answer Part B Is the process reversible or irreversible?arrow_forward
- A-E pleasearrow_forwardThree moles of an ideal gas undergo a reversible isothermal compression at 20.0° C. During this compression, 1900 J of work is done on the gas. For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Entropy change in a free expansion. Part A What is the change of entropy of the gas? ΤΕ ΑΣΦ AS = Submit Request Answer J/Karrow_forward5.97 Block A, with weight 3w, slides down an inclined plane S of slope angle 36.9° at a constant speed while plank B, with weight w, rests on top of A. The plank is attached by a cord to the wall (Fig. P5.97). (a) Draw a diagram of all the forces acting on block A. (b) If the coefficient of kinetic friction is the same between A and B and between S and A, determine its value. Figure P5.97 B A S 36.9°arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill


College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Mechanical work done (GCSE Physics); Author: Dr de Bruin's Classroom;https://www.youtube.com/watch?v=OapgRhYDMvw;License: Standard YouTube License, CC-BY