The article “Supervised Exercise Versus Non- Supervised Exercise for Reducing Weight in Obese Adults” (The J. of Sports Med. and Physical Fitness, 2009: 85–90) reported on an investigation in which participants were randomly assigned to either a supervised exercise program or a control group. Those in the control group were told only that they should take measures to lose weight. After 4 months, the sample
a. Calculate a 99% lower prediction bound for the weight loss of a single randomly selected individual subjected to the supervised exercise program. Can you be highly confident that such an individual will actually lose weight?
b. Does it appear that true average decrease in body fat is more than two kg larger for the experimental condition than for the control condition? Use the accompanying Minitab output to reach a conclusion at significance level of .01. [Note: Minitab accepts such summary data as well as individual observations. Also, because the test is upper-tailed, the software provides a lower confidence bound rather than a conventional CI.]
Sample | N | Mean | StDev | SE Mean |
Exptl. | 17 | 6.20 | 4.50 | 1.1 |
Control | 17 | 1.70 | 3 .10 | 0.75 |
Difference 5 mu (1) 2 mu (2)
Estimate for difference: 4.50
95% lower bound for difference: 2.25
T-Test of difference 5 2 (vs >):
T-Value 5 1.89
P-Value 5 0.035 DF 5 28
Trending nowThis is a popular solution!
Chapter 9 Solutions
Bundle: Probability and Statistics for Engineering and the Sciences, 9th + WebAssign Printed Access Card for Devore's Probability and Statistics for ... and the Sciences, 9th Edition, Single-Term
- 9. The concentration function of a random variable X is defined as Qx(h) = sup P(x ≤ X ≤x+h), h>0. Show that, if X and Y are independent random variables, then Qx+y (h) min{Qx(h). Qr (h)).arrow_forward10. Prove that, if (t)=1+0(12) as asf->> O is a characteristic function, then p = 1.arrow_forward9. The concentration function of a random variable X is defined as Qx(h) sup P(x ≤x≤x+h), h>0. (b) Is it true that Qx(ah) =aQx (h)?arrow_forward
- 3. Let X1, X2,..., X, be independent, Exp(1)-distributed random variables, and set V₁₁ = max Xk and W₁ = X₁+x+x+ Isk≤narrow_forward7. Consider the function (t)=(1+|t|)e, ER. (a) Prove that is a characteristic function. (b) Prove that the corresponding distribution is absolutely continuous. (c) Prove, departing from itself, that the distribution has finite mean and variance. (d) Prove, without computation, that the mean equals 0. (e) Compute the density.arrow_forward1. Show, by using characteristic, or moment generating functions, that if fx(x) = ½ex, -∞0 < x < ∞, then XY₁ - Y2, where Y₁ and Y2 are independent, exponentially distributed random variables.arrow_forward
- 1. Show, by using characteristic, or moment generating functions, that if 1 fx(x): x) = ½exarrow_forward1990) 02-02 50% mesob berceus +7 What's the probability of getting more than 1 head on 10 flips of a fair coin?arrow_forward9. The concentration function of a random variable X is defined as Qx(h) sup P(x≤x≤x+h), h>0. = x (a) Show that Qx+b(h) = Qx(h).arrow_forward
- Suppose that you buy a lottery ticket, and you have to pick six numbers from 1 through 50 (repetitions allowed). Which combination is more likely to win: 13, 48, 17, 22, 6, 39 or 1, 2, 3, 4, 5, 6? barrow_forward2 Make a histogram from this data set of test scores: 72, 79, 81, 80, 63, 62, 89, 99, 50, 78, 87, 97, 55, 69, 97, 87, 88, 99, 76, 78, 65, 77, 88, 90, and 81. Would a pie chart be appropriate for this data? ganizing Quantitative Data: Charts and Graphs 45arrow_forward10 Meteorologists use computer models to predict when and where a hurricane will hit shore. Suppose they predict that hurricane Stat has a 20 percent chance of hitting the East Coast. a. On what info are the meteorologists basing this prediction? b. Why is this prediction harder to make than your chance of getting a head on your next coin toss? U anoiaarrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning