![EBK STATISTICAL TECHNIQUES IN BUSINESS](https://www.bartleby.com/isbn_cover_images/9781259924163/9781259924163_largeCoverImage.jpg)
a.
Construct a 95% confidence interval for the proportion favoring the Republican candidate.
a.
![Check Mark](/static/check-mark.png)
Answer to Problem 66CE
The 95% confidence interval for the proportion favoring the Republican candidate is (0.489, 0.551).
Explanation of Solution
Calculation:
In this case, the number of voters favoring the Republican candidate is 520
Step-by-step procedure to find the 95% confidence interval for the proportion favoring the Republican candidate using MINITAB software:
- Choose Stat > Basic Statistics > 1 Proportion.
- Choose Summarized data.
- In Number of
events , enter 520 and in Number of trials, enter 1,000. - Check Options, enter Confidence level as 95.0.
- Choose not equal in alternative.
- Click OK in each dialog box.
Output is obtained as follows:
From the output, the 95% confidence interval for the proportion favoring the Republican candidate is (0.489, 0.551).
b.
Find the
b.
![Check Mark](/static/check-mark.png)
Answer to Problem 66CE
The probability that the Democratic candidate is actually leading with is 0.102.
Explanation of Solution
Calculation:
In this case, the
The mean (p) is 0.52 and the standard deviation is 0.0158
Hence, the sampling distribution follows normal with mean of 0.52 and standard deviation of 0.0158.
The probability that the Democratic candidate is actually leading is obtained as follows:
Step-by-step procedure to find the probability value using MINITAB software:
- Choose Graph > Probability Distribution Plot >View Probability > OK.
- From Distribution, choose ‘Normal’ distribution.
- Enter Mean as 0 and Standard deviation as 1.
- Click the Shaded Area tab.
- Choose X Value and Left Tail for the region of the curve to shade.
- Enter the data value as –1.27.
- Click OK.
Output using MINITAB software is obtained as follows:
Thus, the probability that the Democratic candidate is actually leading is 0.102.
c.
Construct a 95% confidence interval for the proportion favoring the Republican candidate when the number of voters is 3,000.
Find the probability that the Democratic candidate is actually leading.
c.
![Check Mark](/static/check-mark.png)
Answer to Problem 66CE
The 95% confidence interval for the proportion favoring the Republican candidate is (0.502, 0.538).
The probability that the Democratic candidate is actually leading is 0.0132.
Explanation of Solution
Calculation:
In this case, the number of voters favoring the Republican candidate is 1,560
Step-by-step procedure to find the 95% confidence interval for the proportion favoring the Republican candidate using MINITAB software:
- Choose Stat > Basic Statistics > 1 Proportion.
- Choose Summarized data.
- In Number of events, enter 1,560 and in Number of trials, enter 3,000.
- Check Options, enter Confidence level as 95.0.
- Choose not equal in alternative.
- Click OK in each dialog box.
Output is obtained as follows:
From the output, the 95% confidence interval for the proportion favoring the Republican candidate is (0.502, 0.538).
In this case, the sample size (=3,000) is larger. Therefore, the mean and standard deviation of the sampling distribution using central limit theorem is
The mean (p) is 0.52 and the standard deviation is 0.0091
Hence, the sampling distribution follows normal with mean of 0.52 and standard deviation of 0.0091.
The probability that the Democratic candidate is actually leading is obtained as follows:
Step-by-step procedure to find the probability value using MINITAB software:
- Choose Graph > Probability Distribution Plot >View Probability > OK.
- From Distribution, choose ‘Normal’ distribution.
- Enter Mean as 0 and Standard deviation as 1.
- Click the Shaded Area tab.
- Choose X Value and Left Tail for the region of the curve to shade.
- Enter the data value as –2.20.
- Click OK.
Output using MINITAB software is obtained as follows:
Thus, the probability that the Democratic candidate is actually leading is 0.0139.
Want to see more full solutions like this?
Chapter 9 Solutions
EBK STATISTICAL TECHNIQUES IN BUSINESS
- 9. The concentration function of a random variable X is defined as Qx(h) = sup P(x ≤ X ≤x+h), h>0. Show that, if X and Y are independent random variables, then Qx+y (h) min{Qx(h). Qr (h)).arrow_forward10. Prove that, if (t)=1+0(12) as asf->> O is a characteristic function, then p = 1.arrow_forward9. The concentration function of a random variable X is defined as Qx(h) sup P(x ≤x≤x+h), h>0. (b) Is it true that Qx(ah) =aQx (h)?arrow_forward
- 3. Let X1, X2,..., X, be independent, Exp(1)-distributed random variables, and set V₁₁ = max Xk and W₁ = X₁+x+x+ Isk≤narrow_forward7. Consider the function (t)=(1+|t|)e, ER. (a) Prove that is a characteristic function. (b) Prove that the corresponding distribution is absolutely continuous. (c) Prove, departing from itself, that the distribution has finite mean and variance. (d) Prove, without computation, that the mean equals 0. (e) Compute the density.arrow_forward1. Show, by using characteristic, or moment generating functions, that if fx(x) = ½ex, -∞0 < x < ∞, then XY₁ - Y2, where Y₁ and Y2 are independent, exponentially distributed random variables.arrow_forward
- 1. Show, by using characteristic, or moment generating functions, that if 1 fx(x): x) = ½exarrow_forward1990) 02-02 50% mesob berceus +7 What's the probability of getting more than 1 head on 10 flips of a fair coin?arrow_forward9. The concentration function of a random variable X is defined as Qx(h) sup P(x≤x≤x+h), h>0. = x (a) Show that Qx+b(h) = Qx(h).arrow_forward
- Suppose that you buy a lottery ticket, and you have to pick six numbers from 1 through 50 (repetitions allowed). Which combination is more likely to win: 13, 48, 17, 22, 6, 39 or 1, 2, 3, 4, 5, 6? barrow_forward2 Make a histogram from this data set of test scores: 72, 79, 81, 80, 63, 62, 89, 99, 50, 78, 87, 97, 55, 69, 97, 87, 88, 99, 76, 78, 65, 77, 88, 90, and 81. Would a pie chart be appropriate for this data? ganizing Quantitative Data: Charts and Graphs 45arrow_forward10 Meteorologists use computer models to predict when and where a hurricane will hit shore. Suppose they predict that hurricane Stat has a 20 percent chance of hitting the East Coast. a. On what info are the meteorologists basing this prediction? b. Why is this prediction harder to make than your chance of getting a head on your next coin toss? U anoiaarrow_forward
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780547587776/9780547587776_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781680331141/9781680331141_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780079039897/9780079039897_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305652231/9781305652231_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168383/9781938168383_smallCoverImage.gif)