EBK FUNDAMENTALS OF THERMAL-FLUID SCIEN
EBK FUNDAMENTALS OF THERMAL-FLUID SCIEN
5th Edition
ISBN: 9781259151323
Author: CENGEL
Publisher: MCGRAW HILL BOOK COMPANY
Question
Book Icon
Chapter 9, Problem 57P
To determine

The cycle’s net specific work, the specific heat addition and the thermal efficiency.

Expert Solution & Answer
Check Mark

Explanation of Solution

Given:

Compression ratio (r) is 15.

Cut off ratio (rc) is 1.4.

Pressure ratio (rp) is 1.1.

Temperature of air at state 1(T1) is 75°F.

Pressure of air at state 1(P1) is 14.2psia.

Calculation:

Draw the Pv diagram of the cycle as in Figure (1).

EBK FUNDAMENTALS OF THERMAL-FLUID SCIEN, Chapter 9, Problem 57P

Refer Table A-2E, “Ideal-gas specific heats of various common gases”, obtain the following properties of the air.

  R=0.37047psiaft3/lbmRcv=0.240Btu/lbmRcp=0.171Btu/lbmRk=1.4

Calculate the temperature at state 2(T2).

  T2=T1(v1v2)k1=T1(r)k1=(535R)(15)1.41=1580R

Calculate the pressure at state 2(P2).

  P2=P1(v1v2)k=P1(r)k=(14.2psia)(15)1.4=629.2psia

Calculate the pressure at state x(Px).

  Px=P3=rpP2=(1.1)(629.2psia)=692.1psia

Calculate the temperature at state x(Tx).

  Tx=T2(PxP2)=(1580R)(692.1psia629.2psia)=1738R

Calculate the temperature at state 3(T3).

  T3=Tx(v3vx)=Tx(rc)=(1738R)(1.4)=2433R

Calculate the temperature at state 4(T4).

  T4=T3(v3v4)k1=T3(rcr)k1=(2433R)(1.415)1.41=942.2R

Calculate the amount of work during the process 1-2(w12).

  w12=cv(T2T1)=(0.171Btu/lbmR)(1580R535R)=178.7Btu/lbm

Calculate the amount of heat during the process 2-x(q2x).

  q2x=cv(TxT2)=(0.171Btu/lbmR)(1738R1580R)=27.02Btu/lbm

Calculate the amount of heat during the process x-3(qx3).

  qx3=cp(T3Tx)=(0.240Btu/lbmR)(2433R1738R)=166.8Btu/lbm

Calculate the amount of work during the process x-3(wx3).

  wx3=qx3cv(T3Tx)=166.8Btu/lbm(0.171Btu/lbmR)(2433R1738R)=47.96Btu/lbm

Calculate the amount of work during the process 3-4(w34).

  w34=cv(T3T4)=(0.171Btu/lbmR)(2433R942.2R)=254.9Btu/lbm

Calculate the cycle’s net specific work (wnet).

  wnet=w34+wx3w12=254.9Btu/lbm+47.96Btu/lbm178.7Btu/lbm=124.2Btu/lbm

Thus, the cycle’s net specific work is 124.2Btu/lbm.

Calculate the specific heat addition (qin).

  qin=q2x+qx3=27.02Btu/lbm+166.8Btu/lbm=193.8Btu/lbm

Thus, the specific heat addition is 193.8Btu/lbm.

Calculate the thermal efficiency of the cycle (ηth).

  ηth=wnetqin=124.2Btu/lbm193.8Btu/lbm=0.641=64.1%

Thus, the thermal efficiency of the cycle is 64.1%.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The sketch below gives some details of the human heart at rest. What is the total power requirement (work/time) for an artificial heart pump if we use a safety factor of 5 to allow for inefficiencies, the need to operate the heart under stress, etc.? Assume blood has the properties of water. p pressure above atmosphere blood going to the lungs for a fresh charge of oxygen p = 2.9 kPa 25v pulmonary artery d = 25mm fresh oxygenated blood from the lungs p = 1.0 kPa vena cava d=30mm right auricle pulmonary vein, d = 28mm aorta, d=20mm spent blood returning from left auricle the body p = 0.66 kPa right left ventricle ventricle blood to feed the body, p 13 kPa normal blood flow = 90 ml/s
4- A horizontal Venturi meter is used to measure the flow rate of water through the piping system of 20 cm I.D, where the diameter of throat in the meter is d₂ = 10 cm. The pressure at inlet is 17.658 N/cm2 gauge and the vacuum pressure of 35 cm Hg at throat. Find the discharge of water. Take Cd = 0.98.
10

Chapter 9 Solutions

EBK FUNDAMENTALS OF THERMAL-FLUID SCIEN

Ch. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Prob. 15PCh. 9 - Prob. 16PCh. 9 - Prob. 17PCh. 9 - Prob. 18PCh. 9 - Prob. 19PCh. 9 - Prob. 20PCh. 9 - Prob. 21PCh. 9 - Prob. 22PCh. 9 - Prob. 23PCh. 9 - Prob. 24PCh. 9 - Prob. 25PCh. 9 - Prob. 26PCh. 9 - Prob. 27PCh. 9 - Prob. 28PCh. 9 - Prob. 29PCh. 9 - Prob. 30PCh. 9 - Prob. 31PCh. 9 - Prob. 33PCh. 9 - Prob. 34PCh. 9 - Prob. 35PCh. 9 - Prob. 36PCh. 9 - Prob. 37PCh. 9 - Prob. 38PCh. 9 - Prob. 39PCh. 9 - Prob. 40PCh. 9 - Prob. 41PCh. 9 - Prob. 42PCh. 9 - Prob. 43PCh. 9 - Prob. 44PCh. 9 - Prob. 45PCh. 9 - Prob. 46PCh. 9 - Prob. 47PCh. 9 - Prob. 48PCh. 9 - Prob. 49PCh. 9 - Prob. 50PCh. 9 - Prob. 51PCh. 9 - Prob. 52PCh. 9 - Prob. 53PCh. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Prob. 57PCh. 9 - Prob. 58PCh. 9 - Prob. 60PCh. 9 - Prob. 61PCh. 9 - Prob. 62PCh. 9 - Prob. 63PCh. 9 - Prob. 64PCh. 9 - Prob. 65PCh. 9 - Prob. 66PCh. 9 - Prob. 67PCh. 9 - A simple Brayton cycle using air as the working...Ch. 9 - Prob. 70PCh. 9 - Consider a simple Brayton cycle using air as the...Ch. 9 - Prob. 72PCh. 9 - Prob. 73PCh. 9 - Prob. 74PCh. 9 - A gas-turbine power plant operates on a simple...Ch. 9 - Prob. 77PCh. 9 - Prob. 78PCh. 9 - Prob. 79PCh. 9 - Prob. 80PCh. 9 - Prob. 81PCh. 9 - Prob. 82PCh. 9 - Prob. 83PCh. 9 - Prob. 84PCh. 9 - Prob. 85PCh. 9 - Prob. 86PCh. 9 - Prob. 87PCh. 9 - Prob. 89PCh. 9 - Prob. 90PCh. 9 - Prob. 91PCh. 9 - Prob. 92PCh. 9 - Prob. 93PCh. 9 - Prob. 94PCh. 9 - Prob. 95PCh. 9 - Prob. 96PCh. 9 - Prob. 97PCh. 9 - Prob. 98PCh. 9 - Prob. 99PCh. 9 - Prob. 100PCh. 9 - Prob. 101PCh. 9 - Prob. 102PCh. 9 - Prob. 103PCh. 9 - Prob. 104PCh. 9 - Prob. 105PCh. 9 - Prob. 106PCh. 9 - Prob. 107PCh. 9 - Refrigerant-134a is used as the working fluid in a...Ch. 9 - Prob. 109PCh. 9 - A simple ideal Rankine cycle with water as the...Ch. 9 - Prob. 111PCh. 9 - Prob. 112PCh. 9 - Prob. 113PCh. 9 - Prob. 114PCh. 9 - Prob. 115PCh. 9 - Prob. 116PCh. 9 - Prob. 117PCh. 9 - Prob. 119PCh. 9 - Prob. 120PCh. 9 - Prob. 121PCh. 9 - Prob. 122PCh. 9 - Prob. 123PCh. 9 - Prob. 124PCh. 9 - Prob. 125PCh. 9 - Prob. 127PCh. 9 - Prob. 128PCh. 9 - Prob. 129PCh. 9 - Prob. 130PCh. 9 - Prob. 131PCh. 9 - Prob. 132PCh. 9 - Why is the reversed Carnot cycle executed within...Ch. 9 - Prob. 134PCh. 9 - Prob. 135PCh. 9 - Refrigerant-134a enters the condenser of a...Ch. 9 - Prob. 137PCh. 9 - Prob. 138PCh. 9 - Prob. 139PCh. 9 - Prob. 140PCh. 9 - Prob. 141PCh. 9 - Prob. 142PCh. 9 - Prob. 143PCh. 9 - Prob. 144PCh. 9 - Prob. 145PCh. 9 - Prob. 146PCh. 9 - Prob. 148PCh. 9 - Prob. 149PCh. 9 - A commercial refrigerator with refrigerant-134a as...Ch. 9 - Prob. 151PCh. 9 - Prob. 153PCh. 9 - Prob. 154PCh. 9 - Prob. 155PCh. 9 - Prob. 156PCh. 9 - Prob. 157PCh. 9 - Prob. 158PCh. 9 - Prob. 159PCh. 9 - Refrigerant-134a enters the condenser of a...Ch. 9 - Prob. 161PCh. 9 - Prob. 162PCh. 9 - Prob. 164RQCh. 9 - Prob. 165RQCh. 9 - Prob. 166RQCh. 9 - Prob. 167RQCh. 9 - Prob. 168RQCh. 9 - A Brayton cycle with a pressure ratio of 12...Ch. 9 - Prob. 170RQCh. 9 - Prob. 171RQCh. 9 - Prob. 172RQCh. 9 - Prob. 173RQCh. 9 - Prob. 175RQCh. 9 - Prob. 176RQCh. 9 - Prob. 177RQCh. 9 - Prob. 178RQCh. 9 - Prob. 179RQCh. 9 - Prob. 180RQCh. 9 - Prob. 181RQCh. 9 - Prob. 182RQCh. 9 - Prob. 183RQCh. 9 - Prob. 184RQCh. 9 - Prob. 185RQCh. 9 - Prob. 186RQCh. 9 - A large refrigeration plant is to be maintained at...Ch. 9 - An air conditioner with refrigerant-134a as the...
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY