
(a)
To draw: The graph of the relativistic kinetic energy and the classical kinetic energy, both as a function of speed for an object.
(a)

Answer to Problem 54P
The graph of the classical kinetic energy and the speed is given in figure I and the graph of the relativistic kinetic energy and the speed is given in figure II.
Explanation of Solution
Consider the mass of the object is
The formula for the classical kinetic energy is,
Here,
Substitute
The table for the classical kinetic energy with respective values of the speed, by substitute the values of
|
|
0.000 | 0.000 |
0.100 | 0.045E16 |
0.200 | 0.180E16 |
0.300 | 0.405E16 |
0.400 | 0.720E16 |
0.500 | 1.13E16 |
0.600 | 1.62E16 |
0.700 | 2.21E16 |
0.800 | 2.88E16 |
0.900 | 3.65E16 |
0.990 | 4.41E16 |
Table 1
The graph for classical kinetic energy as a function of speed for an object is given below.
Figure I
The formula for the relativistic kinetic energy is,
Substitute
The table for the relativistic kinetic energy with respective values of the speed, by substitute the values of
|
|
0.000 | 0.000 |
0.100 | 0.0453E16 |
0.200 | 0.186E16 |
0.300 | 0.435E16 |
0.400 | 0.820E16 |
0.500 | 1.39E16 |
0.600 | 2.25E16 |
0.700 | 3.60E16 |
0.800 | 6.00E16 |
0.900 | 11.6E16 |
0.990 | 54.8E16 |
Table 2
The graph for relativistic kinetic energy as a function of speed for an object is given below.
Figure II
Conclusion:
Therefore, the graph of the classical kinetic energy and the speed is given in figure I and the graph of the relativistic kinetic energy and the speed is given in figure II.
(b)
The speed at which the classical kinetic energy underestimate the experimental value by
(b)

Answer to Problem 54P
The speed at which the classical kinetic energy underestimate the experimental value by
Explanation of Solution
As the classical kinetic energy is underestimate the experimental value by
Substitute
Conclusion:
Therefore, the speed at which the classical kinetic energy underestimate the experimental value by
(c)
The speed at which the classical kinetic energy underestimate the experimental value by
(c)

Answer to Problem 54P
The speed at which the classical kinetic energy underestimate the experimental value by
Explanation of Solution
As the classical kinetic energy is underestimate the experimental value by
Substitute
Conclusion:
Therefore, the speed at which the classical kinetic energy underestimate the experimental value by
(d)
The speed at which the classical kinetic energy underestimate the experimental value by
(d)

Answer to Problem 54P
The speed at which the classical kinetic energy underestimate the experimental value by
Explanation of Solution
As the classical kinetic energy is underestimate the experimental value by
Substitute
Conclusion:
Therefore, the speed at which the classical kinetic energy underestimate the experimental value by
Want to see more full solutions like this?
Chapter 9 Solutions
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
- Min Min is hanging from her spring-arms off the edge of the level. Due to the spring like nature of her arms she is bouncing up and down in simple harmonic motion with a maximum displacement from equilibrium of 0.118 m. The spring constant of Min-Min’s arms is 9560. N/m and she has a mass of 87.5 kg. What is the period at which she oscillates? Find her maximum speed. Find her speed when she is located 5.00 cm from her equilibrium position.arrow_forward(a) What magnification in multiples is produced by a 0.150 cm focal length microscope objective that is 0.160 cm from the object being viewed? 15.9 (b) What is the overall magnification in multiples if an eyepiece that produces a magnification of 7.90x is used? 126 × ×arrow_forwardGravitational Potential Energyarrow_forward
- E = кедо Xo A continuous line of charge lies along the x axis, extending from x = +x to positive infinity. The line carries positive charge with a uniform linear charge density 10. (a) What is the magnitude of the electric field at the origin? (Use the following as necessary: 10, Xo, and ke.) (b) What is the direction of the electric field at the origin? O O O O O O G -y +z ○ -z +x -x +yarrow_forwardInclude free body diagramarrow_forward2 Spring 2025 -03 PITT Calculate the acceleration of a skier heading down a 10.0° slope, assuming the coefficient of cold coast at a constant velocity. You can neglect air resistance in both parts. friction for waxed wood on wet snow fly 0.1 (b) Find the angle of the slope down which this skier Given: 9 = ? 8=10° 4=0.1arrow_forward
- dry 5. (a) When rebuilding her car's engine, a physics major must exert 300 N of force to insert a c piston into a steel cylinder. What is the normal force between the piston and cyli=030 What force would she have to exert if the steel parts were oiled? k F = 306N 2 =0.03 (arrow_forwardInclude free body diagramarrow_forwardInclude free body diagramarrow_forward
- Test 2 МК 02 5. (a) When rebuilding her car's engine, a physics major must exert 300 N of force to insert a dry = 0.03 (15 pts) piston into a steel cylinder. What is the normal force between the piston and cylinder? What force would she have to exert if the steel parts were oiled? Mk Giren F = 306N MK-0.3 UK = 0.03 NF = ?arrow_forward2. A powerful motorcycle can produce an acceleration of 3.50 m/s² while traveling at 90.0 km/h. At that speed the forces resisting motion, including friction and air resistance, total 400 N. (Air resistance is analogous to air friction. It always opposes the motion of an object.) What force does the motorcycle exert backward on the ground to produce its acceleration if the mass of the motorcycle with rider is 245 ke? a = 350 m/s 2arrow_forward2. A powerful motorcycle can produce an acceleration of 3.50 m/s² while traveling at 90.0 km/h. At that speed the forces resisting motion, including friction and air resistance, total 400 N. (Air resistance is analogous to air friction. It always opposes the motion of an object.) What force does the motorcycle exert backward on the ground to produce its acceleration if the mass of the motorcycle with rider is 245 kg? (10 pts) a = 3.50 m/s 2 distance 90 km/h = 3.50m/62 M = 245garrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





