
(a)
The initial system of the unstable particle.
(a)

Answer to Problem 34P
The initial system of the unstable particle is isolated.
Explanation of Solution
Isolated system is system which does not allow the flow of mass energy in our out.
Here, the unstable particle system does not allow any disturbance form the interference of mass-energy from outside the system or didn’t allowed any mass–energy to flow out of the system initially. The fragments of smaller mass of the unstable nuclei are also a part of initial system which further carries out the mass and energy with themselves after the decay but there is no involvement of the mass and energy from outside the system.
Thus the initial system is isolated.
Conclusion:
Therefore, the initial system before the decay is isolated.
(b)
The analysis model appropriate for analysis of the given isolated system in part (a).
(b)

Answer to Problem 34P
The two appropriate analysis models are the conservation of momentum in an isolated system and conservation of energy is an isolated system.
Explanation of Solution
In an isolated system both the total momentum as well as total energy is conserved.
Determine the mass of the fragmented particles using the concept of conservation of total momentum and conservation of total energy.
The single unstable nuclei decayed into two fragments and there is no interference of any type of energy from outside and neither there is any flow of energy from outside the system. Therefore the momentum and the energy will be conserved during and after the fragmentation.
Thus the analysis which can be used to determine the mass of the two fragmented particles conservation of momentum in an isolated system and conservation of energy in an isolated system.
Conclusion:
Therefore, the two appropriate analysis models are the conservation of momentum in an isolated system and conservation of energy is an isolated system.
(c)
The relativistic factor for the two particles after decay.
(c)

Answer to Problem 34P
The values for
Explanation of Solution
Given info: The mass of the unstable particle is
The
The formula to calculate the relativistic value is,
Here,
For first fragment,
Substitute
Thus the value of
For second fragment
Substitute
Thus the value of
Conclusion:
Therefore, value of relativistic factor for fragment one is
(d)
The relation between the masses of two fragments using the conservation of energy analysis.
(d)

Answer to Problem 34P
The relation between the mass of fragment one and fragment second is
Explanation of Solution
From the conservation of energy the sum of the energy of the fragments is equal to the sum of the energy of the unstable nuclei.
Here,
The formula to calculate the total relativistic energy is,
Here,
The formula to calculate relativistic energy of a particle
The formula to calculate the energy for particle
Substitute
Substitute
Thus the relation between the mass of fragment one and fragment second is,
Conclusion:
Therefore, the relation between the mass of fragment one and fragment second is
(e)
The relation between the masses of two fragments.
(e)

Answer to Problem 34P
The relation between the masses
Explanation of Solution
Given info: The mass of the unstable nuclei is
From the conservation of momentum the final momentum is zero,
Here,
The momentum of first fragment is,
The momentum of the second fragment is,
Substitute
Substitute
The relation between the two fragment is
Conclusion:
Therefore, from the analysis model of conservation of momentum the relation between the two masses is
Want to see more full solutions like this?
Chapter 9 Solutions
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
- Two complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forwardAn electromagnetic wave is traveling through vacuum in the positive x direction. Its electric field vector is given by E=E0sin(kx−ωt)j^,where j^ is the unit vector in the y direction. If B0 is the amplitude of the magnetic field vector, find the complete expression for the magnetic field vector B→ of the wave. What is the Poynting vector S(x,t), that is, the power per unit area associated with the electromagnetic wave described in the problem introduction? Give your answer in terms of some or all of the variables E0, B0, k, x, ω, t, and μ0. Specify the direction of the Poynting vector using the unit vectors i^, j^, and k^ as appropriate. Please explain all stepsarrow_forwardAnother worker is performing a task with an RWL of only 9 kg and is lifting 18 kg, giving him an LI of 2.0 (high risk). Questions:What is the primary issue according to NIOSH?Name two factors of the RWL that could be improved to reduce risk.If the horizontal distance is reduced from 50 cm to 30 cm, how does the HM change and what effect would it have?arrow_forward
- Two complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for z1z2∗. Find r and θ for z1/z2∗? Find r and θ for (z1−z2)∗/z1+z2∗. Find r and θ for (z1−z2)∗/z1z2∗ Please explain all steps, Thank youarrow_forwardAn ac series circuit consists of a voltage source of frequency 60 Hz and voltage amplitude V, a 505-Ω resistor, and a capacitor of capacitance 7.2 μF. What must be the source voltage amplitude V for the average electrical power consumed in the resistor to be 236 W? There is no inductance in the circuit.arrow_forwardAn L−R−C series circuit has R= 280 Ω . At the frequency of the source, the inductor has reactance XLL= 905 Ω and the capacitor has reactance XC= 485 Ω . The amplitude of the voltage across the inductor is 445 V . What is the amplitude of the voltage across the resistor and the capacitor? What is the voltage amplitude of the source? What is the rate at which the source is delivering electrical energy to the circuit?arrow_forward
- A 0.185 H inductor is connected in series with a 98.5 Ω resistor and an ac source. The voltage across the inductor is vL=−(12.5V)sin[(476rad/s)t]vL. Derive an expression for the voltage vR across the resistor. Express your answer in terms of the variables L, R, VL (amplitude of the voltage across the inductor), ω, and t. What is vR at 2.13 ms ? Please explain all stepsarrow_forwardA worker lifts a box under the following conditions:Horizontal distance (H): 30 cmInitial height (V): 60 cmVertical travel (D): 50 cmTorso rotation (A): 30°Frequency: 3 times/minute for 1 hourGrip: Good Question:What is the RWL for this task?What does this value mean in terms of occupational safety?arrow_forwardCan someone helparrow_forward
- Can someone help mearrow_forward3. Four identical small masses are connected in a flat perfect square. Rank the relative rotational inertias (IA, IB, IC) about the three axes of rotation shown. Axes A and B are in the plane of the square, and axis C is perpendicular to the plane, through mass m1. ΙΑ IB m2 m1 m3 Ic m4 (a) IAarrow_forwardConsider the circuit shown in the figure below. (Assume L = 5.20 m and R2 = 440 Ω.) (a) When the switch is in position a, for what value of R1 will the circuit have a time constant of 15.4 µs? (b) What is the current in the inductor at the instant the switch is thrown to position b?arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





