College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 9, Problem 53GP
A 7300 N elevator is to be given an acceleration of 0.150g by connecting it to a cable of negligible weight wrapped around a turning cylindrical shaft. If the shaft’s diameter can be no larger than 16.0 cm due to space limitations, what must be its minimum
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
the knee extensors insert on the tibia at an angle of 30 degrees (from the longitudinal axis of the tibia), at a distance of 3 cm from the axis of rotation at the knee. how much force must the knee extensors exert to produce an angular acceleration at the knee of 1 rad/s^2. given a mass of the lower leg and foot of 8.8 kg and a radius of rotation of 23 cm?
A disk 8.08 cm in radius rotates at a constant rate of 1 150 rev/min about its central axis.
(a) Determine its angular speed.
X
Note that 1150 rev/min is an angular speed, but the problem asks for different units. rad/s
(b) Determine the tangential speed at a point 3.02 cm from its center.
What is the relationship between angular speed and tangential speed? m/s
(c) Determine the radial acceleration of a point on the rim.
magnitude
direction
Note that the radial acceleration is also called centripetal acceleration. km/s²
toward the center
(d) Determine the total distance a point on the rim moves in 1.96 s.
×
You appear to have correctly calculated this distance using your incorrect value from part (b). m
A 234 kg boat is negotiating a circular turn (radius = 33.1 m) around a buoy. During the turn, the engine causes a net tangential force of magnitude 995 N to be applied to the boat. The initial tangential speed of the boat going into the turn is 20.6 m/s. Find the angular velocity after 2.5 seconds. Use g=9.8
Chapter 9 Solutions
College Physics (10th Edition)
Ch. 9 - What is the difference between the tangential...Ch. 9 - A flywheel rotates with constant angular velocity....Ch. 9 - A flywheel rotates with constant angular...Ch. 9 - A uniform ring of mass M and radius R and a point...Ch. 9 - According to experienced riders, you make a bike...Ch. 9 - A solid ball, a solid cylinder, and a hollow...Ch. 9 - Experienced cooks can tell whether an egg is raw...Ch. 9 - Part of the kinetic energy of a moving automobile...Ch. 9 - Can you think of a body that has the same moment...Ch. 9 - A client has come to you with two metal balls of...
Ch. 9 - If a ball roils down an irregularly shaped hill...Ch. 9 - A uniform marble rolls down a symmetric bowl,...Ch. 9 - When a wheel turns through one complete rotation,...Ch. 9 - Two points are on a disk that rotates about an...Ch. 9 - A bicycle wheel rotating at a rate of 12 rad/s...Ch. 9 - Two uniform solid spheres of the same size, but...Ch. 9 - A disk starts from rest and has a constant angular...Ch. 9 - Two unequal masses m and 2m are attached to a thin...Ch. 9 - A thin uniform bar has a moment of inertia I about...Ch. 9 - Two small objects of equal weight are attached to...Ch. 9 - A disk starts from rest and rotates with constant...Ch. 9 - Two identical merry-go-rounds are rotating at the...Ch. 9 - A solid sphere and a hollow sphere, both uniform...Ch. 9 - A uniform ball rolls without slipping toward a...Ch. 9 - A flexible straight wire 75.0 cm long is bent into...Ch. 9 - (a) What angle in radians is subtended by an arc...Ch. 9 - (a) Calculate the angular velocity (in rad/s) of...Ch. 9 - The once-popular LP (long-play) records were 12...Ch. 9 - If a wheel 212 cm in diameter takes 2.25 s for...Ch. 9 - A curve ball is a type of pitch in which the...Ch. 9 - A laser beam aimed from the earth is swept across...Ch. 9 - Communications satellites. Communications...Ch. 9 - An airplane propeller is rotating at 1900 rpm. (a)...Ch. 9 - At t = 0 a cooling fan running at 200 rad/s is...Ch. 9 - A turntable that spins at a constant 78.0 rpm...Ch. 9 - DVDs. The angular speed of digital video discs...Ch. 9 - A circular saw blade 0.200 m in diameter starts...Ch. 9 - A wheel turns with a constant angular acceleration...Ch. 9 - An electric fan is turned off, and its angular...Ch. 9 - A flywheel in a motor is spinning at 500.0 rpm...Ch. 9 - A flywheel having constant angular acceleration...Ch. 9 - A potters wheel is spinning with an initial...Ch. 9 - A car is traveling at a constant speed on the...Ch. 9 - (a) A cylinder 0.150 m in diameter rotates in a...Ch. 9 - A wheel rotates with a constant angular velocity...Ch. 9 - Ultracentrifuge. Find the required angular speed...Ch. 9 - Exercise! An exercise bike that you pedal in place...Ch. 9 - A flywheel with a radius of 0.300 m starts from...Ch. 9 - A car is traveling at a speed of 101 km/h on the...Ch. 9 - Dental hygiene. Electric toothbrushes can be...Ch. 9 - The spin cycles of a washing machine have two...Ch. 9 - A slender metal rod has a mass M and length L. The...Ch. 9 - A thin uniform bar has two small balls glued to...Ch. 9 - Use the formulas of Table 9.2 to find the moment...Ch. 9 - Four small 0.200 kg spheres, each of which you can...Ch. 9 - Suppose you are given a steel bar and you cut it...Ch. 9 - A bicycle chain connects two sprockets as shown in...Ch. 9 - A wagon wheel is constructed as shown in Figure...Ch. 9 - You need to design an industrial turntable that is...Ch. 9 - A grinding wheel in the shape of a solid disk is...Ch. 9 - The flywheel of a gasoline engine is required to...Ch. 9 - An airplane propeller is 2.08 m in length (from...Ch. 9 - Storing energy in flywheels. It has been suggested...Ch. 9 - A light string is wrapped around the outer rim of...Ch. 9 - A solid uniform 3.25 kg cylinder, 65.0 cm in...Ch. 9 - A solid copper disk has a radius of 0.2 m, a...Ch. 9 - Gymnastics. We can roughly model a gymnastic...Ch. 9 - A bicycle racer is going downhill at 11.0 m/s...Ch. 9 - A 2.20 kg hoop 1.20 m in diameter is rolling to...Ch. 9 - A solid uniform sphere and a uniform spherical...Ch. 9 - A size-5 soccer bail of diameter 22.6 cm and mass...Ch. 9 - A solid uniform marble and a block of ice, each...Ch. 9 - What fraction of the total kinetic energy is...Ch. 9 - A string is wrapped several times around the rim...Ch. 9 - A 150.0 kg cart rides down a set of tracks on four...Ch. 9 - A uniform marble rolls down a symmetric bowl,...Ch. 9 - A 7300 N elevator is to be given an acceleration...Ch. 9 - A 392 N wheel comes off a moving truck and rolls...Ch. 9 - Odometer. The odometer (mileage gauge) of a car...Ch. 9 - Speedometer. Your cars speedometer works in much...Ch. 9 - A passenger bus in Zurich, Switzerland, derived...Ch. 9 - Kinetic energy of bicycle wheels. A 55 kg woman is...Ch. 9 - Compact discs. When a compact disc (CD) is...Ch. 9 - A vacuum cleaner belt is looped over a shaft of...Ch. 9 - A basketball (which can be closely modeled as a...Ch. 9 - Human rotational energy. A dancer is spinning at...Ch. 9 - A solid uniform spherical boulder rolls down a...Ch. 9 - A thin uniform rod 50.0 cm long with mass 0.320 kg...Ch. 9 - In redesigning a piece of equipment, you need to...Ch. 9 - A solid uniform spherical stone starts moving from...Ch. 9 - A solid, uniform hall rolls without slipping up a...Ch. 9 - The kinetic energy of walking. If a person of mass...Ch. 9 - The kinetic energy of running. Using the previous...Ch. 9 - The Spinning Eel. American eels are freshwater...Ch. 9 - The eel is observed to spin at 14 rev/s clockwise,...Ch. 9 - The eel has a certain amount of rotational kinetic...Ch. 9 - A new species of eel is found to have the same...
Additional Science Textbook Solutions
Find more solutions based on key concepts
70. MCAT-Style Passage Problems
Lightbulb Failure
You’ve probably observed that the most common time for an inc...
College Physics: A Strategic Approach (3rd Edition)
The wave function that models a standing wave is given as yr(x,t)=6.00cmsin(3.00m1x+1.20rad)cos(6.00s1t+1.20rad...
University Physics Volume 1
A satellite in Earths orbit is mainly above Earths a atmosphere. b gravitational field. c both of these d neith...
Conceptual Integrated Science
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
Professional Application: A woodpecker's brain is specially protected from large decelerations by tendon-like a...
College Physics
Whats the minimum amount of ice in Example 17.4 that will ensure a final temperature of 0C?
Essential University Physics (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A disk 8.00 cm in radius rotates at a constant rate of 1200 rev/min about its central axis. Determine (a) its angular speed in radians per second, (b) the tangential speed at a point 3.00 cm from its center, (c) the radial acceleration of a point on the rim, and (d) the total distance a point on the rim moves in 2.00 s.arrow_forwardA wheel 2.00 m in diameter lies in a vertical plane and rotates about its central axis with a constant angular acceleration of 4.00 rad/s2. The wheel starts at rest at t = 0, and the radius vector of a certain point P on the rim makes an angle of 57.3 with the horizontal at this time. At t = 2.00 s, find (a) the angular speed of the wheel and, for point P, (b) the tangential speed, (c) the total acceleration, and (d) the angular position.arrow_forwardIn testing an automobile tire for proper alignment, a technicianmarks a spot on the tire 0.200 m from the center. He then mountsthe tire in a vertical plane and notes that the radius vector to thespot is at an angle of 35.0 with the horizontal. Starting from rest,the tire is spun rapidly with a constant angular acceleration of 3.00 rad/s2. a. What is the angular speed of the wheel after 4.00 s? b. What is the tangential speed of the spot after 4.00 s? c. What is the magnitude of the total accleration of the spot after 4.00 s?" d. What is the angular position of the spot after 4.00 s?arrow_forward
- The propeller of an aircraft accelerates from rest with an angular acceleration = 4t + 6, where is in rad/s2 and t isin seconds. What is the angle in radians through which thepropeller rotates from t = 1.00 s to t = 6.00 s?arrow_forwardA turntable (disk) of radius r = 26.0 cm and rotational inertia0.400 kg m2 rotates with an angular speed of 3.00 rad/s arounda frictionless, vertical axle. A wad of clay of mass m =0.250 kg drops onto and sticks to the edge of the turntable.What is the new angular speed of the turntable?arrow_forwardA 12.0-kg solid sphere of radius 1.50 m is being rotated by applying a constant tangential force of 10.0 N at a perpendicular distance of 1.50 m from the rotation axis through the center of the sphere. If the sphere is initially at rest, how many revolutions must the sphere go through while this force is applied before it reaches an angular speed of 30.0 rad/s?arrow_forward
- A solid cylinder of mass 2.0 kg and radius 20 cm is rotating counterclockwise around a vertical axis through its center at 600 rev/min. A second solid cylinder of the same mass and radius is rotating clockwise around the same vertical axis at 900 rev/min. If the cylinders couple so that they rotate about the same vertical axis, what is the angular velocity of the combination?arrow_forwardConsider an object on a rotating disk a distance r from its center, held in place on the disk by static friction. Which of the following statements is not true concerning this object? (a) If the angular speed is constant, the object must have constant tangential speed. (b) If the angular speed is constant, the object is not accelerated. (c) The object has a tangential acceleration only if the disk has an angular acceleration. (d) If the disk has an angular acceleration, the object has both a centripetal acceleration and a tangential acceleration. (e) The object always has a centripetal acceleration except when the angular speed is zero.arrow_forwardFind the net torque on the wheel in Figure P10.23 about the axle through O, taking a = 10.0 cm and b = 25.0 cm. Figure P10.23arrow_forward
- A uniform rod of length b stands vertically upright on a rough floor and then tips over. What is the rods angular velocity when it hits the floor?arrow_forwardA space station is coast me ted in the shape of a hollow ring of mass 5.00 104 kg. Members of the crew walk on a deck formed by the inner surface of the outer cylindrical wall of the ring, with radius r = 100 m. At rest when constructed, the ring is set rotating about its axis so that the people inside experience an effective free-fall acceleration equal to g. (Sec Fig. P11.29.) The rotation is achieved by firing two small rockets attached tangentially to opposite points on the rim of the ring, (a) What angular momentum does the space station acquirer (b) For what time interval must the rockets be fired if each exerts a thrust of 125 N?arrow_forwardA space station is constructed in the shape of a hollow ring of mass 5.00 104 kg. Members of the crew walk on a deck formed by the inner surface of the outer cylindrical wall of the ring, with radius r = 100 m. At rest when constructed, the ring is set rotating about its axis so that the people inside experience an effective free-fall acceleration equal to g. (See Fig. P10.52.) The rotation is achieved by firing two small rockets attached tangentially to opposite points on the rim of the ring. (a) What angular momentum does the space station acquire? (b) For what time interval must the rockets be fired if each exerts a thrust of 125 N? Figure P10.52 Problems 52 and 54.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License